Earth, Planets and Space

, Volume 59, Issue 12, pp 1231–1239 | Cite as

Using a neural network to make operational forecasts of ionospheric variations and storms at Kokubunji, Japan

  • Maho I. Nakamura
  • Takashi Maruyama
  • Yasunari Shidama
Open Access
Article

Abstract

An operational model was developed for forecasting ionospheric variations and storms at Kokubunji (35⊙N, 139⊙E), 24 hours in advance, by using a neural network. The ionospheric critical frequency (foF2) shows periodic variabilities from days to the solar cycle length and also shows sporadic changes known as ionospheric storms caused by geomagnetic storms (of solar disturbance origin). The neural network was trained for the target parameter of foF2 at each local time and input parameters of solar flux, sunspot number, day of the year, Kindex at Kakioka. The training was conducted using the data obtained for the period from 1960 to 1984. The method was validated for the period from 1985 to 2003. The trained network can be used for daily forecasting ionospheric variations including storms using prompt daily reports of K-index, sunspot number, and solar flux values available on-line.

Key words

Ionospheric forecast ionospheric storms neural network foF2 

References

  1. Altinay, O., E. Tulunay, and Y. Tulunay, Forecasting of ionospheric critical frequency using neural networks, Geophys. Res. Lett., 24(12), 1467–1470, 1997.CrossRefGoogle Scholar
  2. Barkhatov, N. A. and S. E. Renynov, Forecasting of the critical frequency of the ionosphere F2 layer by the method of artificial neural networks, Int. J. Geomagn. Aeron., 5, GI2010, 2004.CrossRefGoogle Scholar
  3. Bilitza, D., K. Rawer, L. Bossy, and T. Gulyaeva, International reference ionosphere-past, present, future, Adv. Space Res., 13, 3–23, 1993.CrossRefGoogle Scholar
  4. Cander, L. R. and X. Lamming, Neural networks in ionospheric prediction and short term forecasting, 10th International Conference on Antennas and Propagation, IEEE Conf. Publ., 436, 27–30, 1997.Google Scholar
  5. Funahashi, K., On the approximate realization of continuous mappings by neural networks, Neural Networks, 2, 183–192, 1989.CrossRefGoogle Scholar
  6. Haykin, S., Neural networks, a comprehensive foundation, Prentice Hall Inc., Upper Saddle River, NJ, 1999.Google Scholar
  7. Jones, K. L. and H. Rishbeth, The origin of storm increases of mid-latitude F-layer electron concentration, J. Atmos. Terr. Phys., 33, 391–401, 1971.CrossRefGoogle Scholar
  8. Koike, K., Statistics of the K-index, Kakioka Magnetic Observatory, Gijutsu Hokoku, 31, 32–46, 1991.Google Scholar
  9. Kolmogorov, A. N., On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition, Doklady Akademii Nauk SSSR, 144, 679–681, 1957.Google Scholar
  10. Lei J. H., L. B. Liu, W. X. Wan, and S. R. Zhang, Modeling investigation of ionospheric storm effects over Millstone Hill during August 4–5, 1992, Earth Planets Space, 56(9), 903–908, 2004.CrossRefGoogle Scholar
  11. Martyn, D. F., The morphology of the ionospheric variations associated with magnetic disturbance, Proc. R. Soci. London, Ser. A, 218, 1–18, 1953.CrossRefGoogle Scholar
  12. Matsushita, S., A study of the morphology of ionospheric storms, J. Geophys. Res., 13, 305–321, 1959.CrossRefGoogle Scholar
  13. Matuura, N., Theoretical models of ionospheric storms, Space Sci. Rev., 13, 124–189, 1972.CrossRefGoogle Scholar
  14. McKinnell, L. A. and A. W. V. Poole, Predicting the ionospheric F layer using neural networks, J. Geophys. Res., 109, doi:10.1029/2004JA0104445, 2004.Google Scholar
  15. Oyeyemi, E. O., A. W. V. Poole, and L. A. McKinnell, On the global model for foF2 using neural networks, Radio Sci., 40, doi:10.1029/2004RS003223, 2005a.Google Scholar
  16. Oyeyemi, E. O., A. W. V. Poole, and L. A. McKinnell, On the global short-term forecasting of the ionospheric critical frequency foF2 up to 5 hours in advance using neural networks, Radio Sci., 40, doi:10.1029/2004RS003239, 2005b.Google Scholar
  17. Prölss, G. W., Ionospheric F-region storms, in Handbook of Atmospheric Electrodynamics, vol. 2, (Ed) Volland, H., edited by Boca Raton, 195–248 pp., CRC Press, 1995.Google Scholar
  18. Rishbeth, H., S. Ganguly, and J. C. G. Walker, Field-aligned and fieldperpendicular velocities in the ionospheric F2-layer, J. Atmos. Terr. Phys., 40, 767–784, 1978.CrossRefGoogle Scholar
  19. Rumelhart, D. E., G. E. Hinton, and R. J. Williams, Learning representation by back-propagation errors, Nature, 323, 533–536, 1986.CrossRefGoogle Scholar
  20. Torr, D. G. and M. R. Torr, Chemistry of the thermosphere and ionosphere, J. Atmos. Terr. Phys., 41, 797–839, 1979.CrossRefGoogle Scholar
  21. Tulunay, A. K. E., I. Topalli, and Y. Tulunay, Temporal and spatial forecasting of ionospheric critical frequency using neural networks, Radio Sci., 34, 1497–1506, 1999.CrossRefGoogle Scholar
  22. Williscroft, L. A. and A. W. V. Poole, Neural networks, foF2, sunspot number and magnetic activity, Geophys. Res. Lett., 23, 3659–3662, 1996.CrossRefGoogle Scholar
  23. Wintoft, P. and Lj. R. Cander, Short-term prediction of foF2 using timedelay neural network, Phys. Chem. Earth, 24, 343–347, 1999.Google Scholar
  24. Wintoft, P. and Lj. R. Cander, Ionospheric foF2 storm forecasting using neural networks, Phys. Chem. Earth, 25, 267–273, 2000.Google Scholar
  25. Yumura, T., On the «three-hour-range Indices» K at Kakioka, Memoirs of the Kakioka magnetic observatory, 6, 1–17, 1951.Google Scholar
  26. Yonezawa, T., Theory of formation of the ionosphere, Space Sci. Rev., 5, 3–56, 1966.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2007

Authors and Affiliations

  • Maho I. Nakamura
    • 1
    • 2
  • Takashi Maruyama
    • 1
  • Yasunari Shidama
    • 2
  1. 1.National Institute of Information and Communications TechnologyJapan
  2. 2.Shinshu UniversityJapan

Personalised recommendations