Advertisement

Earth, Planets and Space

, Volume 59, Issue 8, pp 971–979 | Cite as

Simulations of superrotation using a GCM for Venus’ middle atmosphere

  • Masaru Yamamoto
  • Masaaki Takahashi
Open Access
Article

Abstract

A superrotation is simulated in a T10L100 general circulation model for Venus’ middle atmosphere (VMAGCM), in which the radiative effects of aerosols are calculated. The simulation in a domain of 30–100 km is conducted under the condition of a bottom zonal flow with a velocity of 50 m s−1 at the equator. Thermal tides contribute to the maintenance of the cloud-top superrotation together with meridional circulation and vertically propagating gravity waves. The meridional circulation and wave activity are sensitive to the vertical eddy diffusion. Although the equatorial zonal flow has a velocity of about 70 m s−1 when the vertical eddy diffusion coefficient (KV) is set at 5.0 m s−2, it has a velocity of <100 m s−1 when KV = 2.5 m s−2. The fully developed equatorial jet for the small KV case is enhanced at 65 km by small-scale gravity waves emitted from the cloud top.

Key words

Venus superrotation GCM thermal tide 

References

  1. Andrews, D. G., J. R. Holton, and C. B. Leovy, Middle Atmosphere Dynamics, 489 pp., Academic Press, San Diego, 1987.Google Scholar
  2. Crisp, D., Radiative forcing of the Venus mesosphere I. Solar fluxes and heating rates, Icarus, 67, 484–514, 1986.CrossRefGoogle Scholar
  3. Del Genio, A. D. and W. B. Rossow, Planetary-scale wave and the cyclic nature of cloud top dynamics on Venus, J. Atmos. Sci., 47, 293–318, 1990.CrossRefGoogle Scholar
  4. Elson, L. S., Solar related waves in the Venusian atmosphere from the cloud tops to 100 km, J. Atmos. Sci., 40, 1535–1551, 1983.CrossRefGoogle Scholar
  5. Fels, S. B. and R. S. Lindzen, The interaction of thermally excited gravity waves with mean flows, Geophys. Fluid Dynamics, 6, 149–191, 1974.CrossRefGoogle Scholar
  6. Gierasch, P. J., Meridional circulation and the maintenance of the Venus atmosphere rotation, J. Atmos. Sci., 32, 1038–1044, 1975.CrossRefGoogle Scholar
  7. Imamura, T. and G. L. Hashimoto, Venus cloud formation in the meridional circulation, J. Geophys. Res., 103, 31349–31366, 1998.CrossRefGoogle Scholar
  8. Joseph, J. H., W. J. Wiscombe, and J. H. Weinman, The Delta-Eddington approximation for radiative flux transfer, J. Atmos. Sci., 33, 2452–2459, 1976.CrossRefGoogle Scholar
  9. Kuroda, T., N. Hashimoto, D. Sakai, and M. Takahashi, Simulation of the Martian atmosphere using a CCSR/NIES AGCM, J. Meteor. Soc. Japan, 83, 1–15, 2005.CrossRefGoogle Scholar
  10. Leovy, C., Control of the homopause level, Icarus, 50, 311–321, 1982.CrossRefGoogle Scholar
  11. Leovy, C. and Y. Mintz, Numerical simulation of the atmospheric circulation and climate of Mars, J. Atmos. Sci., 26, 1167–1190, 1969.CrossRefGoogle Scholar
  12. Lindzen, R. S., Turbulence and stress due to gravity waves and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.CrossRefGoogle Scholar
  13. Matsuda, Y., Dynamics of the four-day circulation in the Venus atmosphere, J. Meteor. Soc. Japan, 58, 443–470, 1980.Google Scholar
  14. Matsuda, Y., A further study of dynamics of the four-day circulation in the Venus atmosphere, J. Meteor. Soc. Japan, 60, 245–254, 1982.Google Scholar
  15. Matsuda, Y. and T. Matsuno, 4-day circulation in the Venus atmosphere, Kagaku, 50, 285–293, 1980 (in Japanese).Google Scholar
  16. Newman, M. and C. B. Leovy, Maintenance of strong rotational winds in Venus’ middle atmosphere by thermal tides, Science, 257, 647–650, 1992.CrossRefGoogle Scholar
  17. Newman, M., G. Schubert, A. J. Kliore, and I. R. Patel, Zonal winds in the middle atmosphere of Venus from Pioneer Venus radio occultation data, J. Atmos. Sci., 41, 1901–1913, 1984.CrossRefGoogle Scholar
  18. Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, Development of an atmospheric general circulation model, in Climate System Dynamics and Modelling, vol. I-3, edited by T. Matsuno, pp. 1–27, Cent. for Clim. Syst. Res., Univ. of Tokyo, Tokyo, 1995.Google Scholar
  19. Pechmann, J. B. and A. P. Ingersoll, Thermal tides in the atmosphere of Venus: Comparison of model results with observations, J. Atmos. Sci., 41, 3290–3313, 1984.CrossRefGoogle Scholar
  20. Rossow, W. B., A. D. Del Genio, and T. Eichler, Cloud-tracked winds from Pioneer Venus OCPP images, J. Atmos. Sci., 47, 2053–2084, 1990.CrossRefGoogle Scholar
  21. Schofield, J. T. and F. W. Taylor, Measurements of the mean, solar-fixed temperature and cloud structure of the middle atmosphere of Venus, Quart. J. R. Met. Soc., 109, 57–80, 1983.CrossRefGoogle Scholar
  22. Schubert, G., C. Covey, A. D. Del Genio, L. S. Elson, G. Keating, A. Seiff, R. E. Young, J. Apt, C. C. Counselman, III, A. J. Kliore, S. S. Limaye, H. E. Revercomb, L. A. Sromovsky, V. E. Suomi, F. Taylor, R. Woo, and U. von Zahn, Structure and circulation of the Venus atmosphere, J. Geophys. Res., 85, 8007–8025, 1980.CrossRefGoogle Scholar
  23. Seiff, A., D. B. Kirk, R. E. Young, R. C. Blanchard, J. T. Findlay, G. M. Kelly, and S. C. Sommer, Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations: Results from the four Pioneer Venus probes, J. Geophys. Res., 85, 7903–7933, 1980.CrossRefGoogle Scholar
  24. Takagi, M. and Y. Matsuda, Sensitivity of thermal tides in the Venus atmosphere to basic zonal flow and Newtonian cooling, Geophys. Res. Lett., 32, L02203, doi:10.1029/2004GL022060, 2005.Google Scholar
  25. Takagi, M. and Y. Matsuda, Dynamical effect of thermal tides in the lower Venus atmosphere, Geophys. Res. Lett., 33, L13102, doi:10. 1029/2006GL026168, 2006.CrossRefGoogle Scholar
  26. Woo, R. and A. Ishimaru, Eddy diffusion coefficient for the atmosphere of Venus from radio scintillation measurements, Nature, 289, 383–384, 1981.CrossRefGoogle Scholar
  27. Yamamoto, M. and H. Tanaka, Formation and maintenance of the 4-day circulation in the Venus middle atmosphere, J. Atoms. Sci., 54, 1472–1489, 1997.CrossRefGoogle Scholar
  28. Yamamoto, M. and H. Tanaka, The Venusian Y-shaped cloud pattern based on an aerosol-transport model, J. Atmos. Sci., 55, 1400–1416, 1998.CrossRefGoogle Scholar
  29. Yamamoto, M. and M. Takahashi, The fully developed superrotation simulated by a general circulation model of a Venus-like atmosphere, J. Atmos. Sci., 60, 561–574, 2003a.CrossRefGoogle Scholar
  30. Yamamoto, M. and M. Takahashi, Superrotation and equatorial waves in a T21 Venus-like AGCM, Geophys. Res. Lett., 30, doi:10.1029/2003GL016924, 2003b.Google Scholar
  31. Yamamoto, M. and M. Takahashi, Dynamics of Venus’ superrotation: the eddy momentum transport processes newly found in a GCM, Geophys. Res. Lett., 31, doi:10.1029/2004GL019518, 2004.Google Scholar
  32. Yamamoto, M. and M. Takahashi, An aerosol transport model based on a two-moment microphysical parameterization in the Venus middle atmosphere: model description and preliminary experiments, J. Geophys. Res., 111, doi:10.1029/2006JE002688, 2006a.Google Scholar
  33. Yamamoto, M. and M. Takahashi, Superrotation maintained by meridional circulation and waves in a Venus-like AGCM, J. Atmos. Sci., 63, 3296–3314, 2006b.CrossRefGoogle Scholar
  34. Zhang, S., S. W. Bougher, and M. J. Alexander, The impact of gravity waves on the Venus thermosphere and O2 IR nightglow, J. Geophys. Res., 101, 23195–23205, 1996.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2007

Authors and Affiliations

  1. 1.Research Institute for Applied MechanicsKyushu UniversityKasuga, FukuokaJapan
  2. 2.Center for Climate System ResearchUniversity of TokyoKashiwa, ChibaJapan

Personalised recommendations