Advertisement

Earth, Planets and Space

, Volume 58, Issue 9, pp 1197–1201 | Cite as

Inferred long term trends in lightning activity over Africa

Open Access
Article

Abstract

Global warming is becoming a reality, with growing evidence that anthropogenic activity on our planet is starting to influence our climate (IPCC, 2001). Due to the increase in significant weather-related disasters in recent years, it is important to investigate the role of global warming on such changes. In this paper we attempt to estimate the long term trends in lightning activity over tropical Africa during the past 50 years, using upper tropospheric water vapor as a proxy for regional lightning activity. We use the NCAR/NCEP reanalysis product available for the period 1948 to the present to estimate the long term trends in lightning activity. Similarity between the long term African lightning variability and observed rainfall and river discharge variability are demonstrated. Since 1950 the inferred lightning activity over Africa shows significant variability, reaching a maximum during the 1960s, followed by a decrease in activity during the following 30 years.

Key words

Lightning climate change Africa ELF Schumann resonance 

References

  1. Amarasekera, K. N., R. F. Lee, E. R. Williams, and E. A. B. Eltahir, ENSO and the natural variability in the flow of tropical rivers, J. Hydrology, 200, 24–39, 1997.CrossRefGoogle Scholar
  2. Christian, H. J., R. J. Blakeslee, D. J. Boccippio, W. L. Boeck, D. E. Buechler, K. T. Driscoll, S. J. Goodman et al., Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347, 2003.CrossRefGoogle Scholar
  3. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years, Nature, 436, 686–688, 2005.CrossRefGoogle Scholar
  4. Fullekrug, M. and A. Fraser-Smith, Global lightning and climate variability inferred from ELF magnetic field variations, Geophys. Res. Lett., 24(19), 2411–2414, 1997.CrossRefGoogle Scholar
  5. Heckman, S. J., E. R. Williams, and R. Boldi, Total global lightning inferred from Schumann Resonance measurements, J. Geophys. Res., 103, 31775–31779, 1998.CrossRefGoogle Scholar
  6. IPCC Climate Change 2001—IPCC Third Assessment Report, World Meteorological Organisation and UNEP http://www.ipcc.ch/, 2001.Google Scholar
  7. Kistler, R. E., W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki, M. Kanamitsu, V. Kousk et al., The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation, Bull. Amer. Meteor. Soc., 82, 247–268, 2001.CrossRefGoogle Scholar
  8. Mills, E., Insurance in a climate of change, Science, 309, 1040–1044, 2005.CrossRefGoogle Scholar
  9. Milly, P. C. D., R. T. Wetherald, K. A. Dunne, and T. L. Delworth, Increasing risk of great floods in a changing climate, Nature, 415, 514–517, 2002.CrossRefGoogle Scholar
  10. Nicholson, S., The nature of rainfall variability over Africa during the last two centuries, Global and Planeary Change, 26, 137–158, 2000.CrossRefGoogle Scholar
  11. Price, C., Evidence for a link between global lightning activity and upper tropospheric water vapor, Nature, 406, 290–293, 2000.CrossRefGoogle Scholar
  12. Price, C. and M. Asfur, Can Lightning Observations be used as an Indicator of Upper Tropospheric Water Vapor Variability?, Bull. Amer. Meteor. Soc., 87, 291–298, 2006.CrossRefGoogle Scholar
  13. Price, C. and A. Melnikov, Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters, J. Atmos. Solar-Terr. Phys., 66, 1179–1185, 2004.CrossRefGoogle Scholar
  14. Price, C. and D. Rind, A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res., 97, 9919–9933, 1992.CrossRefGoogle Scholar
  15. Price, C. and D. Rind, Possible implications of global climate change on global lightning distributions and frequencies, J. Geophys. Res., 99, 10823–10831, 1994a.CrossRefGoogle Scholar
  16. Price, C. and D. Rind, Modeling global lightning distributions in a General Circulation Model, Mon. Wea. Rev., 122, 1930–1939, 1994b.CrossRefGoogle Scholar
  17. Sato, M. and H. Fukunishi, New evidence for a link between lightning activity and tropical upper cloud coverage, Geophys. Res. Lett., 32, L12807, doi:10.1029/2005GL022865, 2005.Google Scholar
  18. Schumann, W. O., Uber die strahlungslosen eigenschwingungen einer leitenden kugel, die von einer luftschicht und einer ionospharenhulle umgeben ist, Z. Naturforsch., 7a, 149, 1952.Google Scholar
  19. Webster P. J., G. J. Holland, J. A. Curry, and H. R. Chang, Changes in tropical cyclone number, duration, and intensity in a warming environment, Science, 309, 1844–1846, 2005.CrossRefGoogle Scholar
  20. Williams, E. R., Lightning and Climate: A Review, Atmos. Res., 76, 272–287, 2005.CrossRefGoogle Scholar
  21. Williams, E. R. and G. Satori, Lightning, thermodynamics and hydrological comparison of the two tropical continental chimneys, J. Atmos. Sol.-Terr. Phys., 66, 1213–1231, 2004.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  1. 1.Department of Geophysics and Planetary SciencesTel Aviv UniversityIsrael

Personalised recommendations