Advertisement

Earth, Planets and Space

, Volume 58, Issue 7, pp 815–821 | Cite as

Integrated gradient interpretation techniques for 2D and 3D gravity data interpretation

  • Hakim Saibi
  • Jun Nishijima
  • Sachio Ehara
  • Essam Aboud
Open Access
Article

Abstract

The Obama geothermal field is located on the western part of Kyushu Island, Japan. This area has importance due to its high geothermal content which attracts sporadic researchers for study. In 2003 and 2004, Obama was covered by gravity surveys to monitor and evaluate the geothermal field. In this paper, the surveyed gravity data will be used in order to delineate and model the subsurface structure of the study area. Gradient methods such as analytic signal and vertical derivatives were applied to the gravity data. The available borehole data and the results of the gradient interpretation techniques were used to model the Obama geothermal field. In general, the obtained results show that the gradient interpretation techniques are useful to obtain geologic information from gravity data.

Keywords

Analytic Signal Gravity Anomaly Gravity Data Bouguer Gravity Subsurface Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aboud, E., A. Salem, and K. Ushijima, Subsurface structural mapping of Gabel El-Zeit area, Gulf of Suez, Egypt using aeromagnetic data, Earth Planets Space, 57, 755–760, 2005.CrossRefGoogle Scholar
  2. Baranov, V., A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies, Geophysics, 22, 359–383, 1957.CrossRefGoogle Scholar
  3. Barongo, J. O., Method for depth estimation on aeromagnetic vertical gradient anomalies, Geophysics, 50(6), 963–968, 1985.CrossRefGoogle Scholar
  4. Blakely, R. J., Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, 1995.CrossRefGoogle Scholar
  5. Blakely, R. J. and R. W. Simpson, Approximating edges of source bodies from magnetic or gravity anomalies, Geophysics (short note), 51(7), 1494–1498, 1986.CrossRefGoogle Scholar
  6. Cordell, L., Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico, in Guidebook to Santa Fe Country, 30th Field Conference, edited by R. V. Ingersoll, New Mexico Geological Society, pp. 59–64, 1979.Google Scholar
  7. Green, R. and J. M. Stanley, Application of a Hilbert transform method to the interpretation of surface-vehicle magnetic data, Geophysical Prospecting, 23, 18–27, 1975.CrossRefGoogle Scholar
  8. Hansen, R. O. and M. Simmonds, Multiple-source Werner deconvolution, Geophysics, 58(12), 1792–1800, 1993.CrossRefGoogle Scholar
  9. Hansen, R. O., R. S. Pawlowski, and X. Wang, Joint use of analytic signal and amplitude of horizontal gradient maxima for three-dimensional gravity data interpretation, 57th SEG meeting, New Orleans, extended Abstracts, pp. 100–102, 1987.Google Scholar
  10. Hsu, S. K., D. Coppens, and C. T. Shyu, Depth to magnetic source using the generalized analytic signal, Geophysics, 63, 1947–1957, 1998.CrossRefGoogle Scholar
  11. Hsu, S. K., J. C. Sibuet, and C. T. Shyu, High-resolution detection of geologic boundaries from potential anomalies: an enhanced analytic signal technique, Geophysics, 61, 373–386, 1996.CrossRefGoogle Scholar
  12. Katsura, I., J. Nishida, and S. Nishimura, A computer program for terrain correction of gravity using KS-110–1 topographic data, Butsuri-Tansa, 40(3), 161–175, 1987 (in Japanese with Abstract in English).Google Scholar
  13. Keating, P. B. and M. Pilkington, An automated method for the interpretation of magnetic vertical-gradient anomalies, Geophysics, 55(3), 336–343, 1990.CrossRefGoogle Scholar
  14. Keating, P. and M. Pilkington, Euler deconvolution of the analytic signal and its application to magnetic interpretation, Geophysical Prospecting, 52, 165–182, 2004.CrossRefGoogle Scholar
  15. Klingele, E. E., I. Marson, and H. G. Kahle, Automatic interpretation of gravity gradiometric data in two dimensions: vertical gradient, Geophysical Prospecting, 39, 407–434, 1991.CrossRefGoogle Scholar
  16. MacLeod, I. N., K. Jones, and T. F. Dai, 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes, Exploration Geophysics, 679–688, 1993.Google Scholar
  17. Marcotte, D. L., C. D. Hardwick, and J. B. Nelson, Automated interpretation of horizontal magnetic gradient profile data, Geophysics, 57(2), 288–295, 1992.CrossRefGoogle Scholar
  18. Marson, I. and E. E. Klingele, Advantages of using the vertical gradient of gravity for 3-D interpretation, Geophysics, 58(11), 1588–1595, 1993.CrossRefGoogle Scholar
  19. Matsumoto, K., T. Sato, T. Takanezawa, and M. Ooe, GOTIC2: A program for computation of ocean tidal loading effect, J. Geod. Soc. Japan, 47, 243–248, 2001.Google Scholar
  20. Murata, Y., Estimation of optimum average surficial density from gravity data: An objective Bayesian approach, J. Geophys. Res., 98(B7), 12097–12109, 1993.CrossRefGoogle Scholar
  21. Murthy, I. V. R., The midpoint method: Magnetic interpretation of dykes and faults, Geophysics, 50(5), 834–839, 1985.CrossRefGoogle Scholar
  22. Nabighian, M. N., The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation, Geophysics, 37(3), 507–517, 1972.CrossRefGoogle Scholar
  23. Nabighian, M. N., Additional comments on the analytic signal of twodimensional magnetic bodies with polygonal cross-section, Geophysics, 39(1), 85–92, 1974.CrossRefGoogle Scholar
  24. Nabighian, M. N., Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations, Geophysics, 49(6), 780–786, 1984.CrossRefGoogle Scholar
  25. New Energy Developing Organization, Geothermal development research document, Unzen Western Region, New Energy Developing Organization, No. 15, 1988.Google Scholar
  26. O’Brien, D. P., CompuDepth—a new method for depth-to-basement calculation, presented at the 42nd Meeting of the Society of Exploration Geophysicists, Anaheim, CA, 1972.Google Scholar
  27. Ofoegbu, C. O. and N. L. Mohan, Interpretation of aeromagnetic anomalies over part of southeastern Nigeria using three-dimensional Hilbert transformation, Pageoph, 134, 13–29, 1990.CrossRefGoogle Scholar
  28. Ōta, K., A study of hot springs on the Shimabara peninsula, The science reports of the Shimabara volcano observatory, the Faculty of Science, Kyushu University, No. 8, pp. 1–33, 1973.Google Scholar
  29. Poisson, S. D., Mémoire sur la théorie du magnétisme, Mémoires de l’Académie Royale des Sciences de l’Institut de France, pp. 247–348, 1826 (in French).Google Scholar
  30. Reid, A. B., J. M. Allsop, H. Granser, A. J. Millet, and W. Somerton, Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics, 55(1), 80–91, 1990.CrossRefGoogle Scholar
  31. Roest, W. R., J. Verhoef, and M. Pilkington, Magnetic interpretation using the 3-D analytic signal, Geophysics, 57(1), 116–125, 1992.CrossRefGoogle Scholar
  32. Saibi, H., J. Nishijima, E. Aboud, and S. Ehara, Euler deconvolution of gravity data in geothermal reconnaissance; the Obama geothermal area, Japan, Journal of Exploration Geophysics of Japan, 2006 (in press).Google Scholar
  33. Salem, A. and D. Ravat, A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data, Geophysics, 68(6), 1952–1961, 2003.CrossRefGoogle Scholar
  34. Stanley, J. M. and R. Green Gravity gradients and the interpretation of the truncated plate, Geophysics, 41, 1370–1376, 1976.CrossRefGoogle Scholar
  35. Talwani, M., J. L. Worzel, and M. Landisman, Rapid gravity computations for two-dimensional bodies with applications to the Mendocino submarine fracture zone, J. Geophys. Res., 64, 49–59, 1959.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  • Hakim Saibi
    • 1
  • Jun Nishijima
    • 1
  • Sachio Ehara
    • 1
  • Essam Aboud
    • 2
  1. 1.Department of Earth Resources EngineeringKyushu UniversityFukuokaJapan
  2. 2.National Research Institute of Astronomy and GeophysicsHelwan, CairoEgypt

Personalised recommendations