Earth, Planets and Space

, Volume 58, Issue 6, pp 757–763 | Cite as

Modelling of spatial-temporal changes of the geomagnetic field in Japan

  • Xiaoli Ji
  • Mitsuru Utsugi
  • Hiroki Shirai
  • Akira Suzuki
  • Jinlan He
  • Satoshi Fujiwara
  • Yoshihiro Fukuzaki
Open Access
Article

Abstract

A geomagnetic regional model is constructed to provide a spatial-temporal variation of three orthogonal components (X, Y, Z) in Japan. In order to obtain a high temporal and spatial resolution, Natural Orthogonal Components (NOC) analysis and Spherical Cap Harmonic (SCH) analysis were employed to produce a spatial-temporal model based on the observed data from geomagnetic observatories and continuous geomagnetic stations. Using this model, we calculated the secular variation between 1999 and 2004 in Japan. The root mean square (RMS) scatter of the model is less than 3 nT, which indicates a good agreement between calculated and input data.

Key words

Geomagnetic regional model spatial-temporal model secular variation Natural Orthogonal Components Spherical Cap Harmonic 

References

  1. An, Z., Spherical cap harmonic analysis of the geomagnetic field and its secular variation in China for 2000, Chinese Journal of Geophysics, 46, 68–72, 2003 (in Chinese).Google Scholar
  2. Burdelnaya, I. A., S. V. Filippov, V. P. Golovkov, S. Fujiwara, T. Tanabe, S. Nishi, M. Kaidzu, and S. Matsuzaka, Regional orthogonal models of the geomagnetic field changes over the Far East, Earth Planets Space, 51, 287–296, 1999.CrossRefGoogle Scholar
  3. Fujiwara, S., T. Nishiki, H. Shirai, H. Hamazaki, and V. P. Golovkov, Modeling the daily mean values of regional geomagnetic total field changes in Japan, Earth Planets Space, 53, 69–73, 2001.CrossRefGoogle Scholar
  4. Ji, X., H. Shirai, M. Watanabe, J. He, H. Nakagawa, and M. Utsugi, The geomagnetic model in Japan area based on the continuous observation data, Journal of the Geographical Survey Institute, 103, 89–97, 2004 (in Japanese).Google Scholar
  5. Haines, G. V., Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591, 1985.Google Scholar
  6. Haines, G. V., Modelling geophysical fields in source free regions by Fourier series and rectangular harmonic analysis, Geophysica, 25, 91–122, 1989.Google Scholar
  7. Hwang, C. and S. K. Chen, Fully normalized spherical cap harmonics: application to the analysis of sea-level data from TOPEX-POSEIDON and ERS-1, Geophys. J. Int., 129, 450–460, 1997.CrossRefGoogle Scholar
  8. Kotze, P. B., The time varying geomagnetic field of southern Africa, Earth Planets Space, 55, 111–116, 2003.CrossRefGoogle Scholar
  9. Langel, R. A., Main field, in Geomagnetism, edited by J. A. Jacobs, 1, pp. 249–512, Academic Press, London, 1987.Google Scholar
  10. Shirai, H., T. Nishiki, H. Satoh, M. Utsugi, H. Nakai, M. Morita, T. Kad-owaki, and T. Yutsudo, Magnetic charts for the epoch 2000.0, Journal of the Geographical Survey Institute, 99, 1–8, 2002 (in Japanese).Google Scholar
  11. Sumitomo, N. and S. Yabe, Secular change of the geomagnetic total intensity at Tottori, Japan, Disaster Prevention Research Institute Annuals Kyoto University, 21, 79–86, 1978 (in Japanese).Google Scholar
  12. Thebault, E., J. J. Schott, M. Mandea, and P. Hoffbeck, A new proposal for spherical cap harmonic modelling, Geophys. J. Int., 159, 83–103, 2004.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  • Xiaoli Ji
    • 1
  • Mitsuru Utsugi
    • 2
  • Hiroki Shirai
    • 1
  • Akira Suzuki
    • 1
  • Jinlan He
    • 1
  • Satoshi Fujiwara
    • 1
  • Yoshihiro Fukuzaki
    • 1
  1. 1.Geographical Survey InstituteTsukuba, IbarakiJapan
  2. 2.Institute for Geothermal Sciences, Graduate School of ScienceKyoto UniversityKumamotoJapan

Personalised recommendations