Earth, Planets and Space

, Volume 58, Issue 5, pp 607–616 | Cite as

Energetic particle precipitation in the Brazilian geomagnetic anomaly during the “Bastille Day storm” of July 2000

  • Masanori Nishino
  • Kazuo Makita
  • Kiyofumi Yumoto
  • Yoshizumi Miyoshi
  • Nelson J. Schuch
  • Mangalathayil A. Abdu
Open Access


Ionospheric absorption associated with a great geomagnetic storm on July 15–16, 2000 (the “Bastille Day storm”) was observed in the Brazilian geomagnetic anomaly using a two-dimensional 4 × 4 imaging riometer (IRIS). In the afternoon of July 15, weak absorption (≈0.2 dB) was observed during the initial phase of the storm; large spatial-scale absorption exceeded the IRIS field of view (330×330 km). During the sharp magnetic decrease in the main phase of the storm, absorption was intensified (<0.5 dB) in the evening, showing a sheet structure with ≈150 km latitudinal width and >330 km longitudinal elongation. Subsequently, absorption was intensified (≈1 dB), having a small spatial-scale (≈150 km) in the background sheet structure and a pronounced westward drift (≈570 m s-1). In association with large magnetic fluctuations in the Bz component of the interplanetary magnetic field (IMF), the ground magnetic variation in the night sector showed large positive swings during the initial to main phases of the storm. With the subsequent southward turning of the IMF Bz, the ground magnetic variation in the evening sector showed rapid storm development. Particle fluxes measured by a geosynchronous satellite (L =≈6.6) demonstrated large enhancements of low-energy protons (50–400 keV) and probably electrons (50–225 keV) during the storm’s initial phase. Particle fluxes from the low-altitude NOAA satellite (≈870 km) indicated the invasion of low-energy particles into the region of L < 2 during the main phase of the storm. These results indicate that low-energy particles injected into the outer radiation belt in association with frequent and strong substorm occurrences, were transported into the inner radiation belt through direct convective access by the storm-induced electric fields during the storm’s development. These particles then precipitated into the ionosphere over the Brazilian geomagnetic anomaly. Notably, the most intense absorption could be dominantly caused by proton precipitation with energies of ≈40 keV. Key words: Bastille Day storm, Brazilian geomagnetic anomaly, energetic particle precipitation, imaging riometer.


Interplanetary Magnetic Field Magnetic Storm Radiation Belt Evening Sector Outer Radiation Belt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdu, M. A., S. S. Degaonkar, and K. R. Ramanathan, Attenuation of galactic radio noise at 25 Mhz and 21.3 Mhz in the ionosphere over Ahmedabad during 1957–1964, J. Geophys. Res., 72(5), 1547–1554, 1967.CrossRefGoogle Scholar
  2. Abdu, M. A., S. Ananthakrishnan, E. F. Coutinho, B. A. Krishnan, and E. M. Da S. Reis, Azimuthal drift and precipitation of electrons into the South Atlantic geomagnetic anomaly during an SC magnetic storm, J. Geophys. Res., 78(25), 5830–5836, 1973.CrossRefGoogle Scholar
  3. Abdu, M. A., I. S. Batista, R. Piazza, and O. Massambani, Magnetic storm associated enhanced particle precipitation in the South Atlantic anomaly: Evidence from VLF phase measurements, J. Geophys. Res., 86(A9), 7533–7542, 1981.CrossRefGoogle Scholar
  4. Abel, B. and R. M. Thorne, Modeling energetic electron precipitation near the South Atlantic anomaly, J. Geophys. Res., 104(A4), 7037–7044, 1999.CrossRefGoogle Scholar
  5. Badhwar, G. D., Drift rate of the South Atlantic anomaly, J. Geophys. Res., 102, 2343–2349, 1997.CrossRefGoogle Scholar
  6. Basu, S., Su Basu, K. M. Gloves, H.-C. Yeh, S.-Y. Su, R. J. Rich, P. J. Sultan, and M. J. Keskinen, Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000, Geophys. Res. Lett., 28(18), 3577–3580, 2001.CrossRefGoogle Scholar
  7. Batista, L. S. and M. A. Abdu, Magnetic storm associated with delayed sporadic E enhancements in the Brazilian geomagnetic anomaly, J. Geophys. Res., 82(29), 4777–4783, 1977.CrossRefGoogle Scholar
  8. Chen, M., M. Schulz, and L. R. Lyons, Modeling of ring current formation and decay: A review, Magnetic Storms, Geophysical Monograph, 98, pp. 173–186, AGU, Washington, D.C., 1997.Google Scholar
  9. Datlowe, D. W. and W. L. Imhof, Seasonal variations of energetic electron precipitation by cyclotron resonance with VLF waves from a groundbased transmitter, Radio Science, 28, 705–714, 1993.CrossRefGoogle Scholar
  10. Fälthammer, C. G., Motion of charged particles in the magnetosphere, in Cosmic Geophysics, edited by A. Egeland et al., p. 121, Universitiesforlaget, Oslo, 1973.Google Scholar
  11. Gledhill, J. A., Aeronomic effects of the South Atlantic anomaly, Rev. Geophys. Space Phys., 14(2), 173–187, 1976.CrossRefGoogle Scholar
  12. Gonzalez, W. D., S. L. G. Dutra, and O. Pinto, Jr., Middle atmospheric electrodynamic modification by particle precipitation at the South Atlantic Magnetic Anomaly, J. Atmos. Terr. Phys., 49(4), 377–383, 1987.CrossRefGoogle Scholar
  13. Gough, M. P. and M. A. Abdu, Particle precipitation in the South Atlantic anomaly deduced from VLF propagation path measurements, J. Atmos. Terr. Phys., 37, 1379–1383, 1975.CrossRefGoogle Scholar
  14. Greenspan, M. E., G. M. Mason, and J. E. Mazur, Low-altitude equatorial ions: A new look with SAMPEX, J. Geophys. Res., 104(A9), 19,911–19,922, 1999.CrossRefGoogle Scholar
  15. Jayanthi, U. B., M. G. Pereira, I. M. Martin, Y. Stozkov, F. D’Amico, and T. Villela, Electron precipitation associated with geomagnetic activity: Balloon observation of X ray flux in South Atlantic anomaly, J. Geophys. Res., 102(A11), 24,069–24,073, 1997.CrossRefGoogle Scholar
  16. Kohno, T., K. Munakata, K. Nagata, H. Murakami, A. Nakamoto, N. Hasebe, J. Kikuchi, and T. Doke, Intensity maps of MeV electrons and protons below the radiation belt, Planet. Space Sci., 38(4), 483–490, 1990.CrossRefGoogle Scholar
  17. Lühr, H., A. Aylward, S. C. Bucher, A. Pajunpaa, K. Pajunpaa, T. Holmboe, and S.M. Zalewski, Westward moving dynamic substorm features observed with IMAGE magnetometer network and other ground-based instruments, Ann. Geophys., 16, 425–440, 1998.CrossRefGoogle Scholar
  18. Lyons, L. R. and M. Schulz, Access of energetic particles to storm time ring current through enhanced radial “diffusion”, J. Geophys. Res., 94(A5), 5491–5496, 1989.CrossRefGoogle Scholar
  19. Lyons, L. R. and D. J. Williams, A source for the geomagnetic storm main phase ring current, J. Geophys. Res., 85(A2), 523–530, 1980.CrossRefGoogle Scholar
  20. Nagata, K., T. Khono, H. Murakami, A. Nakamoto, N. Hasebe, T. Takenaka, J. Kikuchi, and T. Doke, OHZORA high energy particle observations, J. Geomag. Geoelectr., 37, 329–345, 1CrossRefGoogle Scholar
  21. Nishino, M., Y. Tanaka, T. Oguti, H. Yamagishi, and J. A. Holtet, Initial observation results with imaging riometer at Ny Alesund (L = 16), Proc. NIPR Symposium on Upper Atmosphere Physics, 6, 47–60, 1Google Scholar
  22. Nishino, M., K. Makita, K. Yumoto, F. Rodrigues, N. J. Schuch, and M. A. Abdu, Unusual ionospheric absorption characterizing energetic electron precipitation into the South Atlantic magnetic anomaly, Earth Planets Space, 54, 907–916, 2002.CrossRefGoogle Scholar
  23. Paulikas, G. A., Precipitation of particles at low and middle latitudes, Rev. Geophys. Space Phys., 3(5), 709–734, 1975.CrossRefGoogle Scholar
  24. Pinto, Jr. O. and W. D. Gonzalez, X ray measurements at the South Atlantic magnetic anomaly, J. Geophys. Res., 91(A6), 7072–7078, 1986.CrossRefGoogle Scholar
  25. Pinto, O. and W. D. Gonzalez, Energetic electron precipitation at the South Atlantic Magnetic Anomaly: review, J. Atmos. Terr. Phys., 5, 351–365, 1989.CrossRefGoogle Scholar
  26. Pinto, Jr. O., W. D. Gonzalez, and N. M. Paes Leme, VLF disturbances at the South Atlantic magnetic anomaly following magnetic storms, Planet. Space Sci., 38(5), 633–636, 1990.CrossRefGoogle Scholar
  27. Raben, V. J., D. E. Evans, H. H. Sauer, S. R. Sahm, and M. Huynh, Tiros/NOAA satellite space environment monitor data archive documentation: 1995 update, NOAA Tech. Memo. ERL SEL-86, 1995.Google Scholar
  28. Tanaka, T., Low-latitude ionospheric disturbances: Results for March 22, 1979, and their general characteristics, Geophys. Res. Lett., 13 (13), 1399–1402, 1986.CrossRefGoogle Scholar
  29. Torr, D. G., R. Martsha, R. Torr, C. G. Walker, and R. A. Hoffman, Particle precipitation in the South Atlantic geomagnetic anomaly, Planet. Space Sci., 23, 15–26, 1975.CrossRefGoogle Scholar
  30. Walt, M. and H. D. Voss, Proton precipitation during magnetic storms in August through November 1998, J. Geophys. Res., 109, A02201, doi:0.1029/2003JA010083, 2004.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  • Masanori Nishino
    • 1
  • Kazuo Makita
    • 2
  • Kiyofumi Yumoto
    • 3
  • Yoshizumi Miyoshi
    • 1
  • Nelson J. Schuch
    • 4
  • Mangalathayil A. Abdu
    • 5
  1. 1.Solar-Terrestrial Environment LaboratoryNagoya UniversityToyokawaJapan
  2. 2.Basic Education Series, PhysicsTakushoku UniversityTokyoJapan
  3. 3.Space Environment Research CenterKyushu UniversityFukuokaJapan
  4. 4.INPE, Southern Space Research CenterRio Grande de SulBrazil
  5. 5.INPESao PauloBrazil

Personalised recommendations