Earth, Planets and Space

, Volume 57, Issue 11, pp 1083–1091 | Cite as

Sharply concentrated cosmic-ray excess fluxes from heliomagnetospheric nose and tail boundaries observed with neutron monitors on the ground

Open Access
Article

Abstract

Two kinds of sharply concentrated excess flux of cosmic rays from heliomagnetospheric nose and tail directions (right ascension α ∼ 18 hours and ∼ 6 hours) are found by the analysis of sidereal daily variation of neutron intensity (median energy Em ∼ 20 GeV) on the ground. These fluxes do not show any response to the polarity reversal of solar magnetic field at the north pole and is contradictory to the simulation of the solar modulation of galactic anisotropy, which produces sidereal variation at the Earth greater in the negative polarity state than in the positive state. This indicates that they are not of the galactic origin and would be produced on the heliomagnetospheric nose and tail boundaries where it is considered that the interaction between the galactic and solar magnetic fields could produce the cosmic-ray acceleration. The acceleration mechanism producing the polarity-independent sidereal variation against solar modulation will be discussed.

Key-words

Cosmic-ray sidereal anisotropy heliomagnetosphere (HMS) polarity of HMS solar modulation 

References

  1. Bercovitch, M., The response of the cosmic ray sidereal diurnal variation to reversal of the solar magnetic field, Proc. International Symposium on Cosmic Ray Modulation in the Heliosphere, 329–336, Iwate Univ., Morioka, Japan, 1984.Google Scholar
  2. Caballero-Lopez, R. A., H. Moraal, and F. B. McDonald, Galactic cosmic ray modulation: effects of the solar wind termination shock and the heliosheath, J. Geophys. Res., 109, A05105, doi:10.1029/2003JA010358, 2004.Google Scholar
  3. Fenton, A. G., R. M. Jacklyn, and R. B. Taylor, Cosmic ray observations at 42 mwe underground at Hobart, Tasmania, Il. Nuovo Cimento, 22, 3985–3996, 1961.Google Scholar
  4. Howard, R., Studies of solar magnetic fields I: The average field strength. Solar Phys., 38, 283–299, 1974.CrossRefGoogle Scholar
  5. Jacklyn, R. M., Evidence for a two-way sidereal anisotropy in the charged primary cosmic radiation, Nature, 211, 690–693, 1966.CrossRefGoogle Scholar
  6. Jacklyn, R. M., Galactic cosmic ray anisotropies in the energy range 1011–1014 eV., Proc. Astron. Soc. Australia, 6, 425–436, 1986.Google Scholar
  7. Jokipii, J. R., J. Kota, and E. Merenyi, The gradient of galactic cosmic rays at the solar-wind termination shock, Astrophys. J., 405, 782–786, 1993.CrossRefGoogle Scholar
  8. Kiraly, P., J. Kota, J. L. Osborne, N. S. Stepley, and A.W. Wolfendale, The anisotropy of cosmic ray from 1011 to 1020 eV, Riv. Nuovo Cimento, 2(2), 1–46, 1979.CrossRefGoogle Scholar
  9. McDonald, F. B., E. C. Stone, A. C. Cummings, B. Heikkila, N. Lal, and W. R. Webber, Enhancements of energetic particles near the heliospheric termination shock, Nature, 426, 48–51, 2003.CrossRefGoogle Scholar
  10. Mori, S., S. Yasue, S. Sagisaka, M. Ichinose, K. Chino, S. Akahane, and T. Higuchi, Matsushiro underground cosmic-ray observation (220 m.w.e. depth) and the observation of high energy (#1012 eV) cosmic ray intensity variation, J. Fac. Sci., Shinshu Univ., Matsumoto, Japan., 24(1), 1989.Google Scholar
  11. Nagashima, K. and S. Mori, Summary of general discussion on sidereal daily variation of high energy cosmic rays, Proceedings of International Cosmic Ray Symposium on High Energy Cosmic Ray Modulation, Tokyo Univ., Japan, 326–360, 1976.Google Scholar
  12. Nagashima, K. and I. Morishita, Cosmic ray sidereal daily variation of galactic origin observable in the heliomagnetosphere, Rep. of Cosmic- Ray Research Laboratory, Nagoya Univ., Nagoya, Japan, no. 8, 1983.Google Scholar
  13. Nagashima, K., I. Morishita, and S. Yasue, Asymptotic orbits of cosmic rays incident on the Earth from galactic space, Proc. 17th International Cosmic Ray Conference, 4, 189–192, 1981.Google Scholar
  14. Nagashima, K., I. Morishita, and S. Yasue, Modulation of galactic cosmic ray anisotropy in the heliomagnetosphere: Average sidereal daily variation, Planet. Space Sci., 30, 879–896, 1982.CrossRefGoogle Scholar
  15. Nagashima, K., Y. Ishida, S. Mori, and I. Morishita, Cosmic ray sidereal diurnal variation of galactic origin observed by neutron monitors, Planet. Space Sci., 31, 1269–1278, 1983.CrossRefGoogle Scholar
  16. Nagashima, K., K. Fujimoto, and R. M. Jacklyn, The excess influx of galactic cosmic rays from the tailend side of the heliomagnetosphere, inferred from their sidereal daily variation, Proceedings of International Mini-Conference on Solar Particle Physics and Cosmic Ray Modulation, Solar-Terrestrial Environment Laboratory, Nagoya Univ., Nagoya, Japan, 93–98, 1995.Google Scholar
  17. Nagashima, K., K. Fujimoto, and R. M. Jacklyn, Galactic and heliotail-in anisotropies of cosmic rays as the origin of sidereal daily variation in the energy region <104 GeV, J. Geophys. Res., 103, 17429–17440, 1998.CrossRefGoogle Scholar
  18. Nagashima, K., Z. Fujii, and K. Munakata, Solar modulation of galactic and heliotail-in anisotropies of cosmic rays at Sakashita underground station (320 ∼ 650 GeV), Earth Planets Space, 56, 479–483, 2004.CrossRefGoogle Scholar
  19. Parker, E. N., Interplanetary Dynamic Process, pp. 115–128, Interscience Division, John Wiley and Sons, New York, 1963.Google Scholar
  20. Yasue, S., I. Morishita, and K. Nagashima, Modulation of galactic cosmic ray anisotropy in heliomagnetosphere: influence of cosmic ray scattering on sidereal daily variation, Planet. Space Sci., 33, 1057–1068, 1983.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2005

Authors and Affiliations

  1. 1.Solar-Terrestrial Environment LaboratoryNagoya UniversityNagoyaJapan
  2. 2.Institute for Cosmic Ray ResearchUniversity of TokyoKashiwaJapan

Personalised recommendations