Earth, Planets and Space

, Volume 57, Issue 9, pp 855–869 | Cite as

Magnetic fabric and rock magnetic studies of metasedimentary rocks in the central Okcheon Metamorphic Belt, Korea

  • Yong-Hee Park
  • Seong-Jae Doh
  • Wonnyon Kim
  • Dongwoo Suk
Open Access


Anisotropy of magnetic susceptibility (AMS) and rock magnetic studies have been carried out for the metasedimentary rocks in the central Okcheon Metamorphic Belt. The study area is divided into three metamorphic zones: the biotite zone, the garnet zone, and the sillimanite+andalusite zone from southeast to northwest. Magnetic foliation dipping to the northwest is the dominant magnetic fabric in the biotite zone. Magnetic lineation plunging down-dip of the vertical cleavage plane is appeared in the southeastern part of the garnet zone, while magnetic lineation plunging to southeast prevails in the middle and northwestern parts of the garnet zone. It is interpreted that this apparent synform structure, defined by AMS fabric data, was formed by successive top-to-the-southeast vergent thrusting followed by back-steepening process during the regional metamorphism in the Late Paleozoic. In the sillimanite + andalusite zone, AMS fabric is clearly defined and may reflect a tectonic fabric, recorded during the thermal metamorphism in the middle Jurassic, despite the scarcity of rock fabric in the field. The spatial distribution of magnetic mineralogy, defined by the rock magnetic results, implies the 500°C isotherm at the boundary between the biotite and garnet zones, which is associated with the transformation of pyrrhotite into magnetite above 500°C under the oxidizing condition.


Magnetic fabric magnetic mineralogy metamorphism Okcheon Belt 


  1. Averbuch, O., D. Frizon de Lamotte, and C. Kissel, Magnetic fabric as a structural indicator of the deformation path within a fold thrust structure: a test case from the Corbières (NE Pyrenees, France), J. Struct. Geol., 14, 461–474, 1992.CrossRefGoogle Scholar
  2. Bina, M. and L. Daly, Mineralogical change and self-reversed magnetizations in pyrrhotite resulting from partial oxidation: geophysical implications, Phys. Earth Planet. Inter., 85, 83–99, 1994.CrossRefGoogle Scholar
  3. Bina, M., J. Corpel, L. Daly, and N. Debeglia, Transformation of pyrrhotite to magnetite by heating: a potential source of magnetic anomalies, C. r. Acad. Sci., Ser. II, 313, 487–494, 1991.Google Scholar
  4. Borradaile, G. J., Magnetic susceptibility, petrofabrics and strain, Tectonophysics, 156, 1–20, 1988.CrossRefGoogle Scholar
  5. Borradaile, G. J. and B. Henry, Tectonic applications of magnetic susceptibility and its anisotropy, Earth Sci. Rev., 42, 49–93, 1997.CrossRefGoogle Scholar
  6. Borradaile, G. J., A. MacKenzie, and E. Jensen, Silicate versus trace mineral susceptibility in metamorphic rocks, J. Geophys. Res., 95, 8447–8451, 1990.CrossRefGoogle Scholar
  7. Butler, R. F., Palaeomagnetism: Magnetic Domains to Geologic Terranes, 319 pp., Blackwell Scientific Publications, Boston, 1992.Google Scholar
  8. Cheong, C. S., K. Y. Cheong, H. Kim, M. S. Choi, S. Lee, and M. Cho, Early Permian peak metamorphism recorded in U-Pb system of black slates from the Ogcheon metamorphic belt, South Korea, and its tectonic implication, Chem. Geol., 193, 81–92, 2003.CrossRefGoogle Scholar
  9. Cho, M. and H. Kim, Metamorphic Evolution of the Ogcheon Metamorphic Belt: Review of Recent Studies and Remaining Problems, Jour. Petrol. Soc. Korea, 11, 121–137, 2002.Google Scholar
  10. Chough, S. K., S.-T. Kwon, J.-H. Ree, and D. K. Choi, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view, Earth Sci. Rev., 52, 175–235, 2000.CrossRefGoogle Scholar
  11. Cluzel, D., Formation and tectonic evolution of early Mesozoic intramontane basins in the Ogcheon belt (South Korea): a reappraisal of the Jurassic “Daebo orogeny”, J. Southeast Asian Earth Sci., 7, 223–235, 1992.CrossRefGoogle Scholar
  12. Cluzel, D., J. P. Cadet, and H. Lapierre, Geodynamics of the Okcheon Belt (South Korea), Tectonophysics, 183, 41–56, 1990.CrossRefGoogle Scholar
  13. Cluzel, D., L. Jolivet, and J.-P. Cadet, Early Middle Paleozoic intraplate orogeny in the Okcheon belt (South Korea): a new insight on the Paleozoic buildup of East Asia, Tectonics, 10, 1130–1151, 1991.CrossRefGoogle Scholar
  14. Evans, M. A., M. T. Lewchuk, and R. D. Elmore, Strain partitioning of deformation mechanisms in limestones: examining the relationship of strain and anisotropy of magnetic susceptibility (AMS), J. Struct. Geol., 25, 1525–1549, 2003.CrossRefGoogle Scholar
  15. Ferry, J. M., Petrology of graphitic sulfide-rich schists from south-central Main: an example of desulfidation during prograde regional metamorphism, Am. Mineral, 66, 171–269, 1981.Google Scholar
  16. Frizon de Lamotte, D., C. Souque, S. Grelaud, and P. Robion, Early record of tectonic magnetic fabric during inversion of a sedimentary basin: Short review and examples from the Corbiéres transfer zone (France), Bull. Soc. Geol. France, 173, 461–463, 2002.CrossRefGoogle Scholar
  17. Fuller, M. D., Magnetic anisotropy and paleomagnetism, J. Geophys. Res., 68, 293–309, 1963.CrossRefGoogle Scholar
  18. Graham, J. W., Magnetic anisotropy, an unexploited petrofabric element, Geol. Soc. Am. Bull., 65, 1257–1258, 1954.Google Scholar
  19. Grégoire, V., M. Saint Blanquat, A. Nédélec, and J.-L. Bouchez, Shape anisotropy versus magnetic interactions of magnetite grains: experiments and application to AMS in granitic rocks, Geophys. Res. Lett., 22, 2765–2763, 1995.CrossRefGoogle Scholar
  20. Hargraves, R. B., D. Johnson, and C. Y. Chan, Distribution anisotropy: The cause of AMS in igneous rocks?, Geophys. Res. Lett., 18, 2193–2196, 1991.CrossRefGoogle Scholar
  21. Hrouda, F., Magnetic anisotropy of rocks and its application in geology and geophysics, Geophys. Surv., 5, 37–82, 1982.CrossRefGoogle Scholar
  22. Jelinek, V., Characterization of the magnetic fabric of rocks, Tectonophysics, 79, 63–67, 1981.CrossRefGoogle Scholar
  23. Kanamatsu, T., E. Herrero-Bervera, and A. Taira, Magnetic fabrics of soft-sediment folded strata within a Neogene accretionary complex, the Miura group, central Japan, Earth Planet. Sci. Lett., 187, 333–343, 2001.CrossRefGoogle Scholar
  24. Kang, J. H. and C. G. Lee, Geological Structure of Okcheon Metamorphic Zone in the Miwon-Boeun area, Korea, Jour. Petrol. Soc. Korea, 11, 234–249, 2002.Google Scholar
  25. Kim, H. and M. Cho, Polymetamorphism of Ogcheon Supergroup in the Miwon area, central Ogcheon metamorphic belt, South Korea, Geosciences Journal, 3, 151–162, 1999.CrossRefGoogle Scholar
  26. Kim, O. J., D. S. Lee, and H. Y. Lee, Explanatory text of the 1:50,000 geologic map of Boeun sheet, 35 pp., Korea Research Institute of Geoscience and Mineral Resource, 1977.Google Scholar
  27. Kim, S. W., T. Itaya, H. Hyodo, and T. Matsuda, Metamorphic K-feldspar in low-grade metasediments from the Ogcheon metamorphic belt in South Korea, Gondwana Res., 5, 849–855, 2002.CrossRefGoogle Scholar
  28. Koh, H. J. and J. H. Kim, Deformation sequence and characteristics of the Okcheon Supergroup in the Goesan area, central Okcheon Belt, Korea, J. Geol. Soc. Korea, 31, 271–298, 1995.Google Scholar
  29. Lee, C. H., M. S. Lee, and B. S. Park, Explanatory text of the 1:50,000 geologic map of Miweon sheet, 29 pp., Korea Research Institute of Geoscience and Mineral Resource, 198Google Scholar
  30. Lee, K. S., H. W. Chang, and K. H. Park, Neoproterozoic bimodal volcanism in the central Ogcheon belt, Korea: age and tectonic implication, Precambrian Research, 89, 47–57, 1998.CrossRefGoogle Scholar
  31. Lowrie, W., Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties, Geophys. Res. Lett., 17, 159–162, 1990.CrossRefGoogle Scholar
  32. Oh, C. W., Y. W. Kwon, and S. W. Kim, Metamorphic Evolution of the central Okcheon Metamorphic Belt in the Cheongju-Miwon area, Korea. Jour. Petrol. Soc. Korea, 8, 106–123, 1999.Google Scholar
  33. Oh, C. W., S. W. Kim, I. C. Ryu, T. Okada, H. Hyodo, and T. Itaya, Tectono-metamorphic evolution of the Okcheon Metamorphic Belt, South Korea: Tectonic implications in East Asia, Island Arc, 13, 387–402, 2004.CrossRefGoogle Scholar
  34. Parés, J. P., B. A. van der Pluijm, and J. Dinarès-Turell, Evolution of magnetic fabric during incipient deformation of mudrocks (Pyrenees, Northern Spain), Tectonophysics, 307, 1–14, 1999.CrossRefGoogle Scholar
  35. Ree, J.-H., S.-H. Kwon, Y. Park, S.-T. Kwon, and S.-H. Park, Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea: Implications for the timing of strike-slip shearing and thrusting, Tectonics, 20, 850–867, 2001.CrossRefGoogle Scholar
  36. Robion, P., D. Frizon de Lamotte, C. Kissel, and C. Aubourg, Tectonic versus mineralogical contribution to the magnetic fabrics of epimetamorphic slaty rocks: an example from the Ardennes Massif (France- Belgium), J. Struct. Geol., 17, 1111–1124, 1995.CrossRefGoogle Scholar
  37. Robion, P., C. Kissel, D. Frizon de Lamotte, J. P. Lorand, J. C. Guézou, Magnetic mineralogy and metamorphic zonation in the Ardennes Massif (France-Belgium), Tectonophysics, 271, 231–248, 1997.CrossRefGoogle Scholar
  38. Rochette, P., Metamorphic control of the magnetic mineralogy of the black shales in the Swiss Alps: toward the use of ‘magnetic isogrades’, Earth Planet. Sci. Lett., 84, 446–456. 1987.CrossRefGoogle Scholar
  39. Rochette, P., J. Jackson, and C. Aubourg, Rock magnetism and the interpretation of anisotropy of magnetic susceptibility, Rev. Geophys., 30, 209–234, 1992.CrossRefGoogle Scholar
  40. Rochette, P., J.-P. Lorand, G. Fillion, and V. Sautter, Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on Martian magnetism, Earth Planet. Sci. Lett., 190, 1–12, 2001.CrossRefGoogle Scholar
  41. Sagnotti, A., F. Speranza, A. Winkler, M. Mattei, and R. Funiciello, Magnetic fabric of clay sediments from the external northern Apennines (Italy), Phys. Earth. Planet. Inter., 105, 73–93, 1998.CrossRefGoogle Scholar
  42. Saint-Bezar, B., R. L. Hebert, C. Aubourg, P. Robion, R. Swennen, and D. Frizon de Lamotte, Magnetic fabric and petrographic investigation of hematite-bearing sandstones within ramp-related folds: examples from the South Atlas From (Morocco), J. Struct. Geol., 24, 1507–1520, 2002.CrossRefGoogle Scholar
  43. Stephenson, A., Distribution anisotropy: two simple models for magnetic lineation and foliation, Phys. Earth Planet. Inter., 82, 49–53, 1993.CrossRefGoogle Scholar
  44. Tarling, D. J. and F. Hrouda, The Magnetic Anisotropy of Rocks, 217 pp., Chapman and Hall, London, 1993.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2005

Authors and Affiliations

  • Yong-Hee Park
    • 1
  • Seong-Jae Doh
    • 1
  • Wonnyon Kim
    • 1
  • Dongwoo Suk
    • 2
  1. 1.Department of Earth and Environmental SciencesKorea UniversitySeoulKorea
  2. 2.Department of Earth and Marine SciencesHanyang UniversityAnsanKorea

Personalised recommendations