Earth, Planets and Space

, Volume 57, Issue 7, pp 627–641 | Cite as

Latitudinal and longitudinal displacement of cusp ion precipitation controlled by IMF By and Bz

  • Asai Keiko T. 
  • Kiyoshi Maezawa
  • Toshifumi Mukai
  • Hajime Hayakawa
Open Access


Dependence of the location of the cusp precipitation on the orientation of interplanetary magnetic field (IMF) is investigated using data from the Akebono satellite taken at altitudes of several thousands of km. More than a hundred cusp precipitation events have been identified with the low-energy particle detector (LEP) onboard Akebono. The observed energy spectra of ions precipitating at the cusp are dispersed by the convection motion of field lines. We pay special attention to the location where precipitating ions have the highest energy in the energy dispersion curve as recorded along the satellite’s path; such location would represent the one nearest to the foot point of the dayside reconnection line (we here assume that the cusp ion injection is triggered by the magnetopause reconnection). We study this location as a proxy for the foot point of the reconnection line and call it „ion entry point” in this paper. Our analysis shows that the location of the „ion entry point” has a strong dependence on the sign and magnitude of IMF By and Bz. By and Bz have almost orthogonal effects on the location of the entry point, with the latitudinal displacement linearly related to Bz, and the longitudinal displacement linearly related to By. We find that the Bz dependence of the ion entry point is represented by a single regression line for entire range of Bz irrespective of its north/south polarity. We also find that the By dependence is larger for positive Bz than for negative Bz. The distribution of ion entry points for positive IMF By is almost a mirror image of that for negative IMF By with respect to the noon-midnight meridian plane. We discuss the dependence of the „ion entry point” on the IMF from the viewpoint of where and how the magnetopause reconnection (merging) occurs for various orientations of IMF.

Key words

Cusp cusp precipitation magnetic reconnection dayside merging interplanetary magnetic field 


  1. Aparicio, B., B., Thelin, and R. Lundin, The polar cusp from a particle point of view: A statistical study based on Viking data, J. Geophys. Res., 96, 14023–14031, 1991.CrossRefGoogle Scholar
  2. Asai, K., K. Maezawa, N. Kaya, and T. Mukai, Latitudinal displacement of cusp ion precipitation: Akebono observations, Adv. Space Res., 23, 1761–1764, 1999.CrossRefGoogle Scholar
  3. Basinska, E. M., W. J. Burke, N. C. Maynard, W. J. Hughes, J. D. Winningham, and W. B. Hanson, Small-scale electrodynamics of the cusp with northward Interplanetary Magnetic Field, J. Geophys. Res., 97, 6369–6379, 1992.CrossRefGoogle Scholar
  4. Burch, J. L., P. H. Reiff, R. A. Heelis, J. D. Winningham, W. B. Hanson, C. Gurgiolo, J. D. Menietti, R. A. Hoffman, and J. N. Barfield, Plasma injection and transport in the mid-altitude polar cusp, Geophys. Res. Lett., 9, 921–924, 1982.CrossRefGoogle Scholar
  5. Chandler, M. O., S. A. Fuselier, M. Lockwood, and T. E. Moore, Evidence of component merging equatorward of the cusp, J. Geophys. Res., 104, 22,623–22,634, 1999.CrossRefGoogle Scholar
  6. Cowley, S. W. H., The couses of convection in the Earth’s magnetosphere: A review of developments during IMS, Rev. Geophys., 20, 531–565, 1982.CrossRefGoogle Scholar
  7. Cowley, S. W. H., J. P. Morelli, and M. Lockwood, Dependence of convective flows and particle precipitation in the high-latitude dayside ionosphere on the X and Y components of the interplanetary magnetic field, J. Geophys. Res., 96, 5557–5564, 1991.CrossRefGoogle Scholar
  8. Crooker, N. U., J. Berchem, and C. T. Russell, Cusp displacement at the magnetopause for large IMF Y component, J. Geophys. Res., 92, 13467–13471, 1987.CrossRefGoogle Scholar
  9. Crooker, N. U., J. G. Lyon, and J. A. Fedder, MHD model merging with IMF By: Lobe cells, sunward polar cap convection, and overdraped lobes, J. Geophys. Res., 103, 9143–9152, 1998.CrossRefGoogle Scholar
  10. Farrugia, C. J., P. E. Sandholt, R. B. Torbert, and N. Østgaard, Temporal and spatial aspects of the cusp inferred from local and global ground- and space-based observations in a case study, J. Geophys. Res., 109, A04209, 2004.Google Scholar
  11. Frey, H. U., S. B. Mende, T. J. Immel, S. A. Fuselier, E. S. Claflin, J.-C. Gérard, and B. Hubert, Proton aurora in the cusp, J. Geophys. Res., 107, 1091, 2002.CrossRefGoogle Scholar
  12. Frey, H. U., S. B. Mende, S. A. Fuselier, T. J. Immel, and N. Østgaard, Proton aurora in the cusp during southward IMF, J. Geophys. Res., 108, 1277, 2003.CrossRefGoogle Scholar
  13. Fuselier, S. A., H. U. Frey, K. J. Trattner, S. B. Mende, and J. L. Burch, Cusp aurora dependence on interplanetary magnetic field Bz, J. Geophys. Res., 107, 1111, 2002.CrossRefGoogle Scholar
  14. Fuselier, S. A., S. B. Mende, T. E. Moore, H. U. Frey, S. M. Petrinec, E. S. Claflin, and M. R. Collier, Cusp dynamics and ionospheric outflow, Space Science Reviews, 109, 285–312, 2003.CrossRefGoogle Scholar
  15. Gosling, J. T., M. F. Thomsen, S. J. Bame, R. C. Elphic, and C. T. Russell, Plasma flow reversals at the dayside magnetopause and the origin of asymmetric polar cap convection, J. Geophys. Res., 95, 8073–8084, 1990.CrossRefGoogle Scholar
  16. Hakura, Y., Tables and maps of geomagnetic coordinates corrected by the higher order spherical harmonic terms, Rep. Ionos. Space Res. Japan, 19, 121–157, 1965.Google Scholar
  17. Hayakawa, H., et al., Electric field measurement on the Akebono (EXOSD) satellite, J. Geomag. Geoelectr., 42, 371–384, 1990.CrossRefGoogle Scholar
  18. Heelis, R. A., The effects of interplanetary magnetic field orientation on dayside high-latitude ionospheric convection, J. Geophys. Res., 89, 2873–2880, 1984.CrossRefGoogle Scholar
  19. Karlson, K. A., M. Oieroset, J. Moen, and P. E. Sandholt, A statistical study of flux transfer event signatures in the dayside aurora: The IMF By-related prenoon-postnoon asymmetry, J. Geophys. Res., 101, 59–68, 1996.CrossRefGoogle Scholar
  20. Kremser, G. and R. Lundin, Average spatial distributions of energetic particles in the midaltitude cusp/cleft region observed by Viking, J. Geophys. Res., 95, 5753–5766, 1990.CrossRefGoogle Scholar
  21. Lockwood, M., Relationship of dayside precipitation to the open-closed separatrix and the pattern of convection flow, J. Geophys. Res., 102, 17475–17487, 1997.CrossRefGoogle Scholar
  22. Lockwood, M., S. W. Cowley, P. E. Sandholt, and U. P. Lovhaug, Causes of plasma flow bursts and dayside auroral transients: an evaluation of two models invoking reconnection pulses and chaned in the Y component of the magnetosheath field, J. Geophys. Res., 100, 7613–7626, 1995.CrossRefGoogle Scholar
  23. Lockwood, M., S. W. H. Cowley, and T. G. Onsager, Ion acceleration at both the interior and exterior Alfven waves associated with the magnetopause reconnection site: Signatures in cusp precipitation, J. Geophys. Res., 101, 21501–21513, 1996.CrossRefGoogle Scholar
  24. Maezawa, K., Magnetospheric convection induced by the positive and negative Z components of the interplanetary magnetic field: quantitative analysis using polar cap magnetic records, J. Geophys. Res., 81, 2289–2303, 1976.CrossRefGoogle Scholar
  25. Maynard, N. C., W. J. Burke, P. E. Sandholt, J. Moen, D. M. Ober, M. Lester, D. R. Weimer, and A. Egeland, Observations of simultaneous effects of merging in both hemispheres, J. Geophys. Res., 106, 24551–24578, 2001.CrossRefGoogle Scholar
  26. Menietti, J. D. and J. L. Burch, Spatial extent of the plasma injection region in the cusp-magnetosheath interface, J. Geophys. Res., 93, 105–113, 1988.CrossRefGoogle Scholar
  27. Mukai, T., N. Kaya, E. Sagawa, M. Hirahara, W. Miyake, T. Obara, H. Miyaoka, S. Machida, H. Yamagishi, M. Ejiri, H. Matsumoto, and T. Itoh, Low energy charged particle observation in the „auroral” magnetosphere: First results from Akebono (EXOS-D) satellite, J. Geomag. Geoelectr., 42, 479–496, 1990.CrossRefGoogle Scholar
  28. Newell, P. T. and C.-I. Meng, Cusp width and Bz: Observations and conceptual model, J. Geophys. Res., 92, 13673–13678, 1987.CrossRefGoogle Scholar
  29. Newell, P. T. and C.-I. Meng, The cusp and the cleft/boundary layer: Low-altitude identification and statistical local time variation, J. Geophys. Res., 93, 14549–14556, 1988.CrossRefGoogle Scholar
  30. Newell, P. T., C.-I. Meng, D. G. Sibeck, and R. Lepping, Some low-altitude cusp dependencies on the interplanetary magnetic field, J. Geophys. Res., 94, 8921–8927, 1989.CrossRefGoogle Scholar
  31. Newell, P. T., W. J. Burke, C.-I. Meng, E. R. Sanches, and M. E. Greenspan, Identification and observations of the plasma mantle at low altitude, J. Geophys. Res., 96, 35–45, 1991a.CrossRefGoogle Scholar
  32. Newell, P. T., W. J. Burke, C.-I. Meng, E. R. Sanches, M. E. Greenspan, and C. R. Clauer, The low-latitude boundary layer and the boundary plasma sheet at low altitude: Prenoon precipitation regions and convection reversal boundaries, J. Geophys. Res., 96, 21013–21023, 1991b.CrossRefGoogle Scholar
  33. Onsager, T. G., C. A. Kletzing, J. B. Austin, and H. MacKiernan, Model of magnetosheath plasma in the magnetosphere: Cusp and mantle particles at low-altitudes, Geophys. Res. Let., 20, 479–482, 1993.CrossRefGoogle Scholar
  34. Onsager, T. G., S.-W. Chang, J. D. Perez, J. B. Austin, and L. X. Janoo, Low-altitude observations and modeling of quasi-steady magnetopause reconnection, J. Geophys. Res., 100, 11831–11843, 1995.CrossRefGoogle Scholar
  35. Onsager, T. G., J. D. Scudder, M. Lockwood, and C. T. Russell, Reconnection at the high-latitude magnetopause during northward interplanetary magnetic field conditions, J. Geophys. Res., 106, 25467–25488, 2001.CrossRefGoogle Scholar
  36. Reiff, P. H., T. W. Hill, and J. L. Burch, Solar wind plasma injection at the dayside magnetospheric cusp, J. Geophys. Res., 82, 479–491, 1977.CrossRefGoogle Scholar
  37. Ridley, A. J., G. Lu, C. R. Clauer, and V. O. Papitashvili, A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique, J. Geophys. Res., 103, 4023–4040, 1998.CrossRefGoogle Scholar
  38. Rosenbauer, H., H. Grunwaldt, M. D. Montgomery, G. Paschmann, and N. Sckopke, Heos 2 plasma observations in the distant polar magnetosphere: the plasma mantle, J. Geophys. Res., 80, 2723–2737, 1975.CrossRefGoogle Scholar
  39. Sandholt, P. E. and C. J. Farrugia, Does the aurora provide evidence for the occurrence of antiparallel magnetopause reconnection?, J. Geophys. Res., 108, 1466, 2003.CrossRefGoogle Scholar
  40. Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer, A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497–9511, 1997.CrossRefGoogle Scholar
  41. Sibeck, D. G., R. E. Lopez, and E. C. Roelof, Solar wind control of the magnetopause shape, location, and motion, J. Geophys. Res., 96, 5489–5495, 1991.CrossRefGoogle Scholar
  42. Stasiewicz, K., A global model of gyroviscous field line merging at the magnetopause, J. Geophys. Res., 96, 77–86, 1991.CrossRefGoogle Scholar
  43. Stubbs, T. J., P. J. Cargill, M. Lockwood, M. Grande, B. J. Kellett, and C. H. Perry, Extended cusp-like regions and their dependence on the Polar orbit, seasonal variations, and interplanetary conditions, J. Geophys. Res., 109, A09210, 2004.Google Scholar
  44. Twitty, C., T. D. Phan, G. Paschmann, B. Lavraud, H. Rème, and M. Dunlop, Cluster survey of cusp reconnection and its IMF dependence, Geophys. Res. Lett., 31, L19808, 2004.Google Scholar
  45. Woch, J. and R. Lundin, Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field, J. Geophys. Res., 97, 1421–1430, 1992.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2005

Authors and Affiliations

  • Asai Keiko T. 
    • 1
  • Kiyoshi Maezawa
    • 2
  • Toshifumi Mukai
    • 2
  • Hajime Hayakawa
    • 2
  1. 1.National Institute of Information and Communications TechnologyKoganei, TokyoJapan
  2. 2.Institute of Space and Astronautical ScienceSagamihara, KanagawaJapan

Personalised recommendations