Earth, Planets and Space

, Volume 55, Issue 8, pp 473–481 | Cite as

Rapid reconstruction of electric potentials over an incoherent scatter radar field-of-view

  • Valeriy G. Petrov
  • Vladimir O. Papitashvili
  • C. Robert Clauer
Open Access
Article
  • 94 Downloads

Abstract

A new technique is proposed for the rapid reconstruction of ionospheric electric fields from plasma drift measurements made by the Sondrestrøm incoherent scatter radar. We utilized the adaptive distribution of electric charges over and beyond of the radar field-of-view using a well-known method of regularization developed for solving the ill-posed problems. In this approach, no a priori assumptions are required concerning the regime of tangential components in the plasma drifts (i.e., radial electric fields). The test model calculations and comparisons of the reconstructed electric fields with ground-based geomagnetic field variations, global ionospheric convection modeling, and direct satellite observations demonstrate good results and, therefore, usefulness of the developed technique. This technique could be implemented as a tool for operational monitoring of the overall ionospheric convection dynamics within the incoherent (or coherent) radars field-of-view.

Key words

Geomagnetic data ionospheric potentials electric fields 

References

  1. Behnke, R. A. and R. M. Harper, Vector measurement of F region ion transport at Arecibo, J. Geophys. Res., 78, 8222–8234, 1973.CrossRefGoogle Scholar
  2. Clauer, C. R. and P. M. Banks, Relationship of the interplanetary electric field to the high-latitude ionospheric electric field and currents: observations and model simulation, J. Geophys. Res., 91, 6959–6971, 1986.CrossRefGoogle Scholar
  3. Clauer, C. R., P. Stauning, T. J. Rosenberg, E. Friis-Christensen, P. M. Miller, and R. J. Sitar, Observation of solar-wind-driven modulation of the dayside ionospheric DPY current system, J. Geophys. Res., 100, 7697–7713, 1995.CrossRefGoogle Scholar
  4. Doupnic, J. R., P. M. Banks, M. J. Baron, C. L. Rino, and J. Petriceks, Direct measurements of plasma drift velocities at high magnetic latitude, J. Geophys. Res., 77, 4268–4275, 1972.CrossRefGoogle Scholar
  5. Evans, J. V., Measurements of horizontal drifts in the E and F regions at Millstone Hill, J. Geophys. Res., 77, 2341–2350, 1972.CrossRefGoogle Scholar
  6. Foster, J. C, J. M. Holt, J. D. Kelly, and V. B. Wickwar, High-resolution observations of electric fields and F-region plasma parameters in the cleft ionosphere, in The Polar Cusp, Edited by J. A. Holtet and A. Egeland, NATO ASI Series, Reidel Publishing Co., pp. 349–364, Mass., 1985.Google Scholar
  7. Freeman, M. P., J. M. Ruohoniemi, and R. A. Greenwald, The determination of time-stationary two dimensional convection patterns with single-station radars, J. Geophys. Res., 96, 15735–15740, 1991.CrossRefGoogle Scholar
  8. Fukushima, N., Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform-conductivity ionosphere, Rep. Ionos. Space Res. Japan, 30, 35–40, 1976.Google Scholar
  9. Hardy, D. A., M. S. Gussenhoven, R. Raistrick, and W. J. McNeil, Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity, J. Geophys. Res., 92, 12,275–12,294, 1987.CrossRefGoogle Scholar
  10. Holt, J. M., R. H. Wang, and J. V. Evans, Millstone Hill measurements on 26 February 1979 during the solar eclipse and formation of a midday F region trough, J. Atmos. Terr. Phys., 46, 251–264, 1984.CrossRefGoogle Scholar
  11. Mandea, M. and S. Macmillan, International Geomagnetic Reference Field—the eighth generation, Earth Planets Space, 52, 1119–1124, 2000.CrossRefGoogle Scholar
  12. Papitashvili, V. O. and F. J. Rich, High-latitude ionospheric convection models derived from Defense Meteorological Satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction, J. Geophys. Res., 107(A8), 10.1029/2001JA000264, 2002.Google Scholar
  13. Popov, V. A., V. O. Papitashvili, and J. F. Watermann, Modeling of equivalent ionospheric currents from meridian magnetometer chain data, Earth Planets Space, 53(2), 129–137, 2001.CrossRefGoogle Scholar
  14. Porath, H., D. W. Oldenburg, and D. I. Gough, Separation of magnetic variation fields and conductive structures in the western United States, Geophys. J. Roy. Astron. Soc, 19, 237–260, 1970.CrossRefGoogle Scholar
  15. Ridley, A. J. and C. R. Clauer, Characterization of the dynamical variations of the dayside high-latitude ionospheric convection reversal boundary and relationship to interplanetary magnetic field orientation, J. Geophys. Res., 104, 101, 10,919-10,938, 1996.Google Scholar
  16. Tikhonov, A. N. and V. Ia. Arsenin, Solution of ill-posed problems, 258 pp., Halsted Press, New York, 1977.Google Scholar
  17. Wickwar, V. B., J. D. Kelly, O. de laBeaujardiere, C. A. Leger, F. Steenstrup, and C. H. Dawson, A Sondrestrøm overview, Geophys. Res. Lett., 11, 883–866, 1984.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2003

Authors and Affiliations

  • Valeriy G. Petrov
    • 1
  • Vladimir O. Papitashvili
    • 1
  • C. Robert Clauer
    • 1
  1. 1.Space Physics Research LaboratoryUniversity of MichiganAnn ArborUSA

Personalised recommendations