Earth, Planets and Space

, Volume 55, Issue 4, pp 203–213 | Cite as

Damping of ion-cyclotron whistler waves through ionospheric plasma

Open Access
Article
  • 156 Downloads

Abstract

The propagation features of ion-cyclotron whistler waves through the hydrogen, helium and oxygen plasma are studied. Expression for temporal damping, spatial damping and the time development of wave amplitude is derived from the modified theory of cyclotron damping of ion-cyclotron whistler wave including thermal effect. It is shown that the temporal damping is dominant for wave frequencies closer to the ion gyrofrequencies. The variations in plasma conditions cause variation in sudden commencement of cyclotron damping, which occurs after finite time of propagation of ion whistlers. The results have been used to explain the sudden cut-off of the amplitude of ion whistler wave observed by rockets and satellites in the terrestrial ionosphere. It is shown that the present study can be used to estimate ion temperature of the plasma.

Key words

Ion whistlers ion gyro-frequency temporal damping spatial damping dispersion time-development 

References

  1. Andre, M., G. B. Grew, W. K. Peterson, A. M. Persoon, C. J. Pollock, and M. J. Engebretson, Ion heating by broad band low frequency waves in the cusp/cleft, J. Geophys. Res., 95, 20,809, 1990.CrossRefGoogle Scholar
  2. Brice, N. M., Fundamentals of very low frequency emission generation mechanism, J. Geophys. Res., 69, 4515–4522, 1964.CrossRefGoogle Scholar
  3. Buchsbaum, S. S., Resonance in plasma with two ion species, Phys. Fluids, 3, 418–420, 1960.CrossRefGoogle Scholar
  4. Chang, T., G. B. Crew, N. Hershkowitz, J. R. Jasperse, J. M. Retterer, and J. D. Winningham, Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left hand polarized waves, Geophys. Res. Lett., 13, 636–639, 1986.CrossRefGoogle Scholar
  5. Crew, G. B., T. Chang, J. M. Retterer, W. K. Peterson, D. A. Gurnett, and R. L. Huff, Ion cyclotron resonance heated conics: theory and observation, J. Geophys. Res., 95, 3959–3985, 1990.CrossRefGoogle Scholar
  6. Cserepes, L., Notes on synthesizing ion cyclotron whistler by the full wave method, Ann. Geophys., 5, 155–160, 1987.Google Scholar
  7. Erlandson, R. E., L. J. Zanetti, T. A. Potemra, L. P. Block, and G. Holmgren, Viking magnetic and electric field observations of PC1 waves at high latitudes, J. Geophys. Res., 95, 5941, 1990.CrossRefGoogle Scholar
  8. Fraser, B. J., H. J. Singer, W. J. Hughes, J. R. Wygaut, R. R. Anderson, and Y. D. Hu, CRRES Poynting vector observations of electromagnetic ion-cyclotron waves near the peamapause, J. Geophys. Res., 101, 15,331, 1996.CrossRefGoogle Scholar
  9. Ginzburg, M. A., Low-frequency waves in multicomponent plasma, Geomag. and Aeron., 3, 610–614, 1963.Google Scholar
  10. Gurnett, D. A. and N. M. Brice, Ion temperature in the ionosphere obtained from cyclotron damping of proton whistlers, J. Geophys. Res., 71, 3639–3652, 1966.CrossRefGoogle Scholar
  11. Gurnett, D. A. and S. D. Shawhan, Determination of hydrogen ion concentration, electron density and proton gyro-frequency from the dispersion of proton whistler, J. Geophys. Res., 71, 741–754, 1966.CrossRefGoogle Scholar
  12. Gurnett, D. A., S. D. Shawhan, N. M. Brice, and R. L. Smith, Ion cyclotron whistlers, J. Geophys. Res., 70, 1665–1688, 1965.CrossRefGoogle Scholar
  13. Hines, C. O., Heavy-ion effects in audio-frequency radio propagation, J. Atmos. Terr. Phys., 11, 36–42, 1957.CrossRefGoogle Scholar
  14. Horne, R. B. and R. M. Thorne, Ion cyclotron absorption at the second harmonic of the oxygens gyrofrequency, Geophys. Res. Lett., 17, 2225, 1990.CrossRefGoogle Scholar
  15. Johnson, J. R. and C. Z. Cheng, Can ion cyclotron waves propagate to the ground, Geophys. Res. Lett., 26, 671, 1999.CrossRefGoogle Scholar
  16. Klumpar, D. M., A digest and comprehensive bibliography on transverse auroral acceleration, in Ion Acceleration in the Magnetosphere and Ionosphere, Geophys. Monogr. Ser., Vol. 38, edited by T. S. Chang, p. 389, AGU, Washington DC, 1986.CrossRefGoogle Scholar
  17. Lucas, C. and N. Brice, Irregularities in proton density deduced from cyclotron damping of proton whistlers, J. Geophys. Res., 76, 92–99, 1971.CrossRefGoogle Scholar
  18. Lysak, R. L., Ion acceleration by wave-particle interaction, in Ion Acceleration in the Magnetosphere and Ionosphere, Geophys. Monogr. Ser., Vol. 38, edited by T. S. Chang, p. 2612, AGU, Washington, DC, 1986.Google Scholar
  19. Narayan, D., Probing of Ionosphere by VLF whistlers/VHF waves, Ph.D. Thesis, Banaras Hindu University, India, 1998.Google Scholar
  20. Orsolya, E. Z. F., Electromagnetic wave propagation in different terrestrial atmospheric models, Ph.D. Thesis, Budapest, Hungary, 1999.Google Scholar
  21. Ronnmark, K. and M. Andre, Convection of ion cyclotron waves to ion-heating regions, J. Geophys. Res., 96, 17573–17579, 1991.CrossRefGoogle Scholar
  22. Singh, A. K., Study of inner magnetosphere by VLF waves, Ph.D. Thesis, Banaras Hindu University, India, 1995.Google Scholar
  23. Singh, S. N., S. Tiwari, and S. K. Tolpadi, Characteristics of electron-ion whistlers and their applications of ionospheric probing, J. Geophys. Res., 81, 1327–1330, 1976.CrossRefGoogle Scholar
  24. Singh, A. K., A. K. Singh, D. K. Singh, and R. P. Singh, The effect of temperature on the dispersion of proton whistler, J. Atmos. Solar Terr. Phys., 60, 551–561, 1998.CrossRefGoogle Scholar
  25. Smith, R. L. and N. Brice, Propagation in multicomponent plasma, J. Geophys. Res., 69, 5029–5040, 1964.CrossRefGoogle Scholar
  26. Smith, R. L., N. M. Brice, J. Katswfrakis, D. A. Gurnett, S. D. Shawhan, J. S. Belrose, and R. E. Bamington, An ion gyrofrequency phenomena observed in satellites, Nature, 204, 274–275, 1964.CrossRefGoogle Scholar
  27. Stix, T. H., The theory of plasma waves, New York, McGraw-Hill, 1962.Google Scholar
  28. Watanabe, S. and T. Ondoh, Deutron whistlers and trans-equational propagation of the ion electron whistler, Planet. Space Sci., 24, 359–364, 1976.CrossRefGoogle Scholar
  29. Yakimenko, Y. L., Oscillations in a cold plasma containing two ion species, Soviet Phys. Tech. Phys. English Transl., 7, 117–124, 1962.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2003

Authors and Affiliations

  1. 1.Atmospheric Research Laboratory, Physics DepartmentBanaras Hindu UniversityVaranasiIndia

Personalised recommendations