Earth, Planets and Space

, Volume 54, Issue 6, pp 707–714 | Cite as

Trapped positron flux formation in the innermost magnetosphere of the Earth

  • A. A. Gusev
  • U. B. Jayanthi
  • G. I. Pugacheva
  • V. M. Pankov
  • N. Schuch
Open Access


The possible existence of a positron radiation belt in the inner magnetosphere of the Earth, its space location, flux, energy distribution and the ratio of e+/e fluxes is considered. The source of the positrons/electrons is assumed to be the decay of charged pions (π - μ - e decay chain) produced, in the nuclear interactions between protons and the neutral constituents of the atmosphere. The production of excess positron fluxes over electron ones through this process is examined for two different proton populations and their atmospheric interactions in the altitude range of 80 to 1000 km. Monte Carlo simulations of intranuclear cascade process through SHIELD code was utilized to simulate these interactions. Considering the trapped proton fluxes in the inner magnetosphere as a source, the simulations for interactions in rarified atmosphere shows excess of positrons over electrons with ratios above 2 for proton energies below 2.5 GeV. Although, protons above this energy do not produce excess of positrons compared to electrons in atmospheric interactions, we assumed the primary cosmic rays with the energy greater than 8–10 GeV also as a source for these interactions, and utilizing the east-west asymmetry in the arrival directions of these primary cosmic rays combined with the exponential nature of the atmosphere density we also obtained an excess of positrons over electrons escaping from the atmosphere to the altitudes of satellite orbits. A comparison is attempted with the recent data of AMS experiment on board the space shuttle.


Radiation Belt Arrival Direction Geomagnetic Equator Trap Positron Trap Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barashenkov, V. S. and V. D. Toneev, Interaction of Particles and Atomic Nuclei of High and Superhigh Energies with Nuclei, Atomizdat, Moscow, Russia, 812 pp., 1972.Google Scholar
  2. Basilova, R. N., A. A. Gusev, G. I. Pugacheva, and A. F. Titenkov, High energy trapped electrons in the inner radiation belt, Geom. Aeronom., 22, 671–673, 1982.Google Scholar
  3. Chen, J., T. G. Guzik, Y. Sang, and J. P. Wefel, Energetic helium particles trapped in the magnetosphere, Geophys. Res. Lett., 21, 1583–1586, 1994.CrossRefGoogle Scholar
  4. Dementyev, A. V. and N. M. Sobolevsky, SHIELD—universal Monte Carlo hadron transport code: scope and applications, Radiation Measurements, 30, 553–562, 1999.CrossRefGoogle Scholar
  5. Freden, S. C. and R. S. White, Particle fluxes in the inner radiation belt, J. Geophys. Res., 65(5), 1377–1383, 1960.CrossRefGoogle Scholar
  6. Galper, A. M., V. M. Grachev, V. V. Dmitrenko, et al., High energy electrons in the radiation belt of the Earth, 18 Int. Cosmic Ray Conference, Bangalore, India, MG.10-33, 497–500, 1983.Google Scholar
  7. Guinzburg, V. L., Astrophysics of Cosmic Rays, pp. 358, Nauka, Moscow, Russia, 1984 (in Russian).Google Scholar
  8. Gusev, A. A., I. M. Martin, G. I. Pugacheva, A. Turtelli, Jr., W. N. Spjeldvik, Energetic positron population in the inner zone, Il Nuovo Cimento, Sect. C, 19, 461–465, 1996.CrossRefGoogle Scholar
  9. Gusev, A. A., U. B. Jayanthi, G. I. Pugacheva, and W. N. Spjeldvik, Nuclear reactions on rarest atmosphere as a source of magnetospheric positron radiation belt, J. Geophys. Res., 106(A11), 26111–26115, 2001.CrossRefGoogle Scholar
  10. Hedin, A. E., Extension of the MSIS thermospheric model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1168, 1991.CrossRefGoogle Scholar
  11. Machner, H. and J. Hidenbauer, Meson production close to threshold, Journal of Physics G: Nuclear and Particle Physics, 25(10), 231–271, 1999.CrossRefGoogle Scholar
  12. Pugacheva, G. I., W. N. Spjeldvik, A. A. Gusev, and I. M. Martin, On the natural energetic positron population in the inner zone of the Earth, J. Atmos. Solar-Terr Phys., 59, 363–369, 1997.CrossRefGoogle Scholar
  13. Pugacheva, G. I., W. Gonzalez, A. A. Gusev, U. B. Jayanthi, I. M. Martin, D. Boscher, S. Bourdarier, and W. N. Spjeldvik, Numerical simulation of steady state proton, positron, isotope ion radiation belts and of a sudden creation of transient helium radiation belt during geomagnetic storms, ISEC2001 Radiation Belt Science and Technology, July 23–27, 2001, Queenstown, New Zealand, [], 2001.
  14. Selesnick, R. S. and R. A. Mewaldt, Atmospheric production of radiation belt light isotopes, J. Geophys. Res., 101(A10), 19745–19759, 1996.CrossRefGoogle Scholar
  15. Spjeldvik, W. N., G. I. Pugacheva, A. A. Gusev, I. M. Martin, and N. M. Sobolevsky, Sources of inner Radiation Zone Energetic Helium Ions: cross-field transport versus in-situ nuclear reactions, Adv. SpaceRes., 21, 1675–1678, 1998a.CrossRefGoogle Scholar
  16. Spjeldvik, W. N., G. I. Pugacheva, A. A. Gusev, I. M. Martin, and N. M. Sobolevsky, Hydrogen and helium isotope inner radiation belts in the Earth’s magnetosphere, Annales Geophysicae, 16, 931–939, 1998b.CrossRefGoogle Scholar
  17. The AMS collaboration, Protons in near Earth orbit, Phys. Lett. B, 472, 215–226, 2000a.CrossRefGoogle Scholar
  18. The AMS collaboration, Leptons in near Earth’s orbit, Phys. Lett. B, 484, 10–17, 2000b.CrossRefGoogle Scholar
  19. Voronov, S. A., A. M. Galper, V. G. Kirillov-Ugryumov, S. V. Koldashev, and A. V. Popov, High energy electrons and positrons in the Earth’s radiation belt, Geom. and Aeronom., 27(3), 424–427, 1987.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2002

Authors and Affiliations

  • A. A. Gusev
    • 1
  • U. B. Jayanthi
    • 1
  • G. I. Pugacheva
    • 1
  • V. M. Pankov
    • 2
  • N. Schuch
    • 3
  1. 1.Instituto Nacional de Pesquisas EspaciaisINPESao Jose dos CamposBrazil
  2. 2.Space Research Institute of Russian Academy of ScienceMoscowRussia
  3. 3.Southern Regional Space Research Center/INPESanta MariaBrazil

Personalised recommendations