Advertisement

Earth, Planets and Space

, Volume 52, Issue 4, pp 237–243 | Cite as

Daily variations of geomagnetic HD and Z-field at equatorial latitudes

  • F. N. Okeke
  • Y. Hamano
Open Access
Article

Abstract

With the establishment of the new geomagnetic field observations in the Ocean Hemisphere Network Project (OHP) in Japan, minutes values of geomagnetic components, H D and Z have been recorded. The hourly mean values were used to study the variations in these three components at these new equatorial electrojet regions. The results of the analysis carried out revealed that the amplitude of d H has diurnal variation which peaks during the day at about local noon in all the three equatorial electrojet regions. This diurnal variation in H with Sq (H) enhancement in all the three regions are attributed to the enhanced dynamo action at these regions. Diurnal variation as observed in D indicates that the equatorial electrojet current system has both east-west and north-south components. The pronounced magnitude of Z variation as observed in Kiritimati is attributed mainly to sea induction. Also some abnormal features were observed on 23rd of January at Huancayo, in the components. Seasonal variations with more pronounced equinoctial maximum were observed in H than in Z. D component showed no consistent seasonal variation in all the regions. The equinoctial maximum is due to enhanced equatorial electron density at equinox. More research work, if carried out in these new regions will be useful in making more new contributions to the field of the dynamics of the equatorial electrojet region.

Keywords

Diurnal Variation Daily Variation Equatorial Electrojet Dynamo Action Equatorial Latitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alex, S., B. D. Kadam, and R. G. Rastogi, A new aspect of daily variations of the geomagnetic field at low latitude, J. Atmos. Terr. Phys., 54(7/8), 863–869, 1992.CrossRefGoogle Scholar
  2. Bartels, J. and H. F. Johnston, Geomagnetic tides in horizontal intensity at Huancayo-part1, J. Geophys. Res., 45, 264–308, 1940.Google Scholar
  3. Chapman, S., The solar and lunar variation of the earth’s magnetism, Phil. Trans. R. Soc. Lond., A 218, 1–118, 1919.CrossRefGoogle Scholar
  4. Chapman, S., The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru, and elsewhere, Arch. Meteorol. Geophys. Bioclimatol. A, 4, 368–390, 1951.CrossRefGoogle Scholar
  5. Chapman, S. and K. O. Rajarao, The H and Z variation along and near equatorial electrojet in India, Africa and the Pacific, J. Atmos. Terr. Phys., 27, 559–581, 1965.CrossRefGoogle Scholar
  6. Doumouya, V., J. Vassal, Y. Cohen, O. Fambitakoye, and M. Menvielle, Equatorial electrojet at African longitudes: First results from magnetic measurements, Ann. Geophys., 16, 658–676, 1998.CrossRefGoogle Scholar
  7. Egedal, J., The magnetic diurnal variation of the horizontal force near the magnetic equator, Terr. Magn. Atmos. Electr, 52, 449–451, 1947.CrossRefGoogle Scholar
  8. Fambitakoye, O., Variabilité jour-à-jour de la variation journalière régulière du champ magnétique terrestre dans la région de l’électrojet équatorial. C. R. AcadSci. Paris, 272, 637–640, 1971.Google Scholar
  9. Fambitakoye, O. and P. N. Mayaud, Equatorial electrojet and regular daily variation SR-1: A determination of the equatorial electrojet parameters, J. Atmos. Terr. Phys., 38, 1–17, 1976a.CrossRefGoogle Scholar
  10. Fambitakoye, O. and P. N. Mayaud, Equatorial electrojet and daily variation SR-2: The centre of the equatorial electrojet, J. Atmos. Terr. Phys., 38, 19–26, 1976b.CrossRefGoogle Scholar
  11. Forbush, S. E. and M. Casaverde, The equatorial electrojet in Peru, Carnegie Inst. Washington Publication, 620, 135 pp., 1961.Google Scholar
  12. Maeda, H., T. Iyemori, T. Araki, and T. Kamei, New evidence of ameridional current system in the equatorial ionosphere, Geophys. Res. Lett, 9, 337–340, 1982.CrossRefGoogle Scholar
  13. Okeke, F. N., C. A. Onwumechili, and B. A. Rabiu, Day-to-day variability of geomagnetic hourly amplitudes at low latitudes, Geophys. J. Int., 134, 484–500, 1998.CrossRefGoogle Scholar
  14. Onwumechili, C. A., Spatial and temporal distributions of ionospheric currents in subsolar elevations, J. Atmos. Terr. Phys., 59, 1891–1899, 1997.CrossRefGoogle Scholar
  15. Patil, A., B. R. Arora, and R. G. Rastogi, Daily variations of the geomagnetic field near the focus in Sq current system of Indian longitude, Proc. Indian Acad. Sci., 92, 239–245, 1983.Google Scholar
  16. Patil, A. R., D. R. K. Rao, and R. G. Rastogi, Equatorial Electrojet strengths in the Indian and American Sectors: Part 1. During low solar activity, J. Geomag. Geoelectr, 42, 801–811, 1990.CrossRefGoogle Scholar
  17. Rastogi, R. G., Westward equatorial electrojet during daytime hours, J. Geophys. Res., 79, 1503–1512, 1974.CrossRefGoogle Scholar
  18. Rastogi, R. G., Solar flare effects on zonal and meridional current at the equatorial electrojet station, Annamalainagar, J. Atmos Terr. Phys., 58(13) 1413–1420, 1996.CrossRefGoogle Scholar
  19. Shimizu, H. and H. Utada, Ocean Hemisphere Geomagnetic Network: its instrumental design and perspective for long-term geomagnetic observations in the pacific, Earth Planets Space, 51, 917–932, 1999.CrossRefGoogle Scholar
  20. Tarpley, J. D., Seasonal movement of the Sq current foci and related effects in the equatorial electrojet, J. Atmos. Terr. Phys., 35, 1063–1071, 1973.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2000

Authors and Affiliations

  1. 1.Department of Earth and Planetary PhysicsUniversity of TokyoTokyoJapan

Personalised recommendations