Earth, Planets and Space

, Volume 52, Issue 1, pp 13–24 | Cite as

Effect of vertical velocity gradient on ground motion in a sediment-filled basin due to incident SV wave

Open Access
Article

Abstract

The natural sedimental deposits in basins show strong vertical heterogeneity in their material parameters. The aim of this paper is to investigate the effects of such vertical heterogeneity, especially vertical velocity gradient, inside basin on the seismic ground motion through the parametric study on the response of a two-dimensional semi-cylindrical sediment-filled basin to a vertical incidence of plane SV wave using the pseudospectral method. This numerical study has tried to find the effects caused by vertical velocity gradient through the use of synthetic seismograms, wavefield snapshots and surface amplitude distribution. Simulation results clearly demonstrate the detailed character of wave propagation phenomena in basins with vertical velocity gradient, which produces characteristic amplification pattern of the surface motion caused mainly by the generation of strong Rayleigh wave induced at the basin edge associated with large lateral velocity change across the basin edge. Amplification pattern at the surface strongly depends on both the vertical velocity gradient in the basin and the predominant frequency of the incident wave. Although similar phenomena on wave propagation and surface motion found in previous studies for homogeneous basin models have also been observed in this study, it has been found that the vertical velocity gradient enhances such phenomena. The results suggest that it is important to represent the vertical velocity profiles accurately when we construct a structural model for realistic modelling of ground motion.

Keywords

Ground Motion Rayleigh Wave Synthetic Seismogram Pseudospectral Method Basin Boundary 

References

  1. Anderson, J. G., P. Bodin, J. N. Brune, J. Prince, S. K. Singh, R. Quaas, and M. Onate, Strong ground motion from the Michoacan, Mexico, earthquake, Science, 233, 1043–1049, 1986.CrossRefGoogle Scholar
  2. Bard, P.-Y. and M. Bouchon, The seismic response of sedimentary-filled valleys, Part II. The case of incident P and SV waves, Bull. Seis. Soc. Am., 70, 1921–1941, 1980.Google Scholar
  3. Bard, P.-Y. and J. Gariel, The seismic response of two-dimensional sedimentary deposits with large vertical velocity gradients, Bull. Seis. Soc. Am., 76, 343–346, 1986.Google Scholar
  4. Benites, R. and K. Aki, Ground motion at mountains and sedimentary basins with vertical seismic velocity gradient, Geophys. J. Int., 116, 95–118, 1994.CrossRefGoogle Scholar
  5. Bouchon, M. and K. Aki, Discrete wave-number representation of seismic-source wave fields, Bull. Seis. Soc. Am., 67, 259–277, 1977.Google Scholar
  6. Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics, 50, 705–708, 1985.CrossRefGoogle Scholar
  7. Daudt, C., L. Braile, R. Nowack, and C. Chiang, A comparison of finite-difference and Fourier method calculations of synthetic seismogram, Bull. Seis. Soc. Am., 79, 1210–1230, 1989.Google Scholar
  8. Fornberg, B., The pseudospectral method: Comparisons with finite differences for the elastic wave equation, Geophysics, 52, 483–501, 1987.CrossRefGoogle Scholar
  9. Furumura, T., H. Takenaka, and K. Kotetsu, Numerical 3-D modeling of seismic waves by the pseudospectral method, Butsuri-Tansa, 49, 536–548, 1996 (in Japanese with English abstract).Google Scholar
  10. Furumura, T., B. L. N. Kennett, and H. Takenaka, Parallel 3-D pseudospectral simulation of seismic wave propagation, Geophysics, 63, 279–288, 1998.CrossRefGoogle Scholar
  11. Gao, S., H. Liu, P. M. Davis, and L. Knopoff, Localized amplification of seismic waves and correlation with damage due to the Northridge earthquake: evidence for focusing in Santa Monica, Bull. Seis. Soc. Am., 86, 209–230, 1996.Google Scholar
  12. Graves, R. W., Three-dimensional computer simulations of realistic earthquake ground motions in regions of deep sedimentary basins, in The Effects of Surface Geology on Seismic Motion, edited by K. Irikura et al., 103 pp., Balkema, Rotterdam, 1998.Google Scholar
  13. Haskell, N. A., The dispersion of surface waves on multilayered media, Bull. Seis. Soc. Am., 43, 17–34, 1953.Google Scholar
  14. Hisada, Y. and S. Yamamoto, One-, two-, and three-dimensional site effects in sediment-filled basins, Proceedings of the 11th World Conference on Earthquake Engineering, Paper No. 2040, Acapulco, Mexico, 1996.Google Scholar
  15. Hisada, Y., K. Aki, and T. L. Teng, 3-D simulations of surface wave propagation in the Kanto sedimentary basin, Japan part 2: application of the surface wave BEM, Bull. Seis. Soc. Am., 83, 1700–1720, 1993.Google Scholar
  16. Kawase, H., Effects of sedimentary basins on strong motion—in Mexico city and in Kobe city, in Comprehensive Study of Strong Ground Motion Prediction, edited by K. Irikura, 71 pp., DPRI, Kyoto University, 1996 (in Japanese with English abstract).Google Scholar
  17. Kawase, H., S. Matsushima, R. Graves, and P. Somerville, Three-dimensional wave propagation analysis of simple two-dimensional basin structures with special reference to “the basin-edge effect”, Zisin (J. Seis. Soc. Japan), 50, 431–449, 1998 (in Japanese with English abstract).Google Scholar
  18. King, J. L. and B. E. Tucker, Observed variations of earthquake motion across a sediment-filled valley, Bull. Seis. Soc. Am., 74, 137–151, 1984.Google Scholar
  19. Kosloff, D. and E. Baysal, Forward modeling by a Fourier method, Geophysics, 47, 1402–1412, 1982.CrossRefGoogle Scholar
  20. Kosloff, D., M. Reshef, and D. Loewenthal, Elastic wave calculation by the Fourier method, Bull. Seis. Soc. Am., 74, 875–891, 1984.Google Scholar
  21. Takenaka, H., Computational methods for seismic wave propagation in complex subsurface structures, Zisin (J. Seis. Soc. Japan), 46, 191–205, 1993 (in Japanese with English abstract).Google Scholar
  22. Takenaka, H., Y. Wang, and T. Furumura, An efficient approach of the pseudospectral method for modelling of geometrically symmetric seismic wavefield, Earth Planets Space, 51, 73–79, 1999.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2000

Authors and Affiliations

  • Yanbin Wang
    • 1
  • Hiroshi Takenaka
    • 1
  • Takashi Furumura
    • 2
  1. 1.Department of Earth and Planetary SciencesKyushu UniversityFukuokaJapan
  2. 2.Faculty of EducationHokkaido University of EducationIwamizawaJapan

Personalised recommendations