Advertisement

Earth, Planets and Space

, Volume 51, Issue 11, pp 1233–1246 | Cite as

Japanese contribution to in-situ meteoroid and debris measurement in the near Earth space

  • Hajime Yano
Open Access
Article

Abstract

This paper reviews major results of present studies and recent developments for future missions in the Japanese space program regarding in-situ measurement and collection of micrometeoroids and orbital debris in the near Earth space. Japan’s contribution in this area began with the post flight impact analysis of the Space Flyer Unit (SFU) satellite which was returned to Earth in 1996 after 10-month exposure in space. Despite a decade later than similar efforts first conducted in the USA and Europe, it resulted in a record of over 700 hypervelocity impact signatures, which now forms the nation’s first database of real space impacts being open to public in the Internet. Together with laboratory impact tests, both morphological and elemental analyses of the impact craters yielded new insights of the meteoroid to debris ratio as well as flux variation compared with the previous spacecraft. The next step was a passive aerogel exposure in the STS-85 shuttle mission in 1997. No hypervelocity impact was found there but its experience has been incorporated for designing a microparticle collector to be on-board the Japan Experiment Module-Exposed Facility of the International Space Station. All of such “passive” collection of micro-impact features, however, still leave the significant uncertainty in the quest of their origins. Therefore an aerogel-based “hybrid” dust collector and detector (HD-CAD) is currently under the development. It measures time of impact and deduces impactors’ orbital and physical parameters by detecting impact flash while still capturing them intact. The system is suitable for both (1) sample return missions in LEO as well as to parent bodies of meteoroids, i.e., comets and asteroids, and (2) one-way mission to where the thermal and plasma environment is such that impact induced plasma detectors may suffer from significant noise, e.g., a Mercury orbiter and a solar probe. Together with unambiguous dust samples from a comet by STARDUST and an asteroid by MUSES-C as references, the HD-CAD in the LEO will be able to deduce the accretion rates of the cometary and asteroidal dust grains on the Earth.

Keywords

International Space Station Hubble Space Telescope Impact Crater Space Debris Dust Collector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amari, S., J. Foote, P. Swan, R. M. Walker, E. Zinner, and G. Lange, SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2, Proc. SecondLDEFPost-Retrieval Symp., NASA CP-3194, 513–528, 1993.Google Scholar
  2. Bernhard, R. P., R. A. Barrett, and M. E. Zolensky, Analytical electron microscopy of LDEF impact residues, Proc. Third LDEF Post-Retrieval Symp., NASA CP-3275, 401–413, 1995.Google Scholar
  3. Brownlee, D. E., F. Hörz, L. W. Hrubesh, J. A. M. McDonnell, P. Tsou, and J. Williams, Eureka! Aerogel capture of meteoroids in space, Abst. Lunar Planet. Sci. Conf., 25(1), 183–184, 1994.Google Scholar
  4. Burchell, M. J., R. Thomson, and H. Yano, Capture of hypervelocity particles in aerogel: In ground laboratory and low Earth orbit, Planet. Space Sci., 47, 189–204, 1999.CrossRefGoogle Scholar
  5. Cosmic Dust Preliminary Examination Team (CDPET), Cosmic Dust Catalog, 1–14, NASA/JSC, Houston, Texas, 1982–1994.Google Scholar
  6. Deshpande, S. P., C. R. Maag, S. Kibe, M. J. Neish, and H. Yano, Post-flight contamination assessment/control of the SFU spacecraft, Space Technol., 17(2), 103–112, 1997a.CrossRefGoogle Scholar
  7. Deshpande, S. P., M. J. Neish, H. Yano, and S. Kibe, SFU micrometeoroid and space debris impact data archive, Adv. Astronaut. Sci., 96, 1021–1031, 1997b.Google Scholar
  8. Graham, G. A., A. T. Kearsley, M. M. Grady, and I. P. Wright, The rapid identification of impact residues in the solar array panels of the HST by digitised back-scattered electron & X-ray elemental imaging, Proc. Second Eur. Conf. on Space Debris, ESA-SP-393, 1997.Google Scholar
  9. Graham, G. A., A. T. Kearsley, M. M. Grady, I. P. Wright, and J. A. M. McDonnell, Micrometeoroid residues collected in Low Earth Orbit, Abst. Lunar Planet. Sci. Conf., 39, 1647, 1998 (on CD-ROM).Google Scholar
  10. Hasegawa, S., A. Fujiwara, H. Yano, T. Nishimura, S. Sasaki, H. Ohashi, T. Iwai, K. Kobayashi, and H. Shibata, Design of accelerators for development of microparticle detectors, Adv. Space Res., 23(2), 367–370, 1999.CrossRefGoogle Scholar
  11. Hörz, F., T. H. See, R. Bernhard, and J. Warren, ODC: Aerogel particle capture during 18 months exposure on Mir, Abst. Lunar Planet. Sci. Conf, 29, 1998.Google Scholar
  12. Kawaguchi, J., H. Saito, T. K. Uesugi, and A. Fujiwara, MUSES-C, a technology demonstrator tapping for the asteroid sample return, Presented at the 21st Int’l Symp. on Space Tech. and Sci., Saitama, Japan, ISTS 98-o-3-04V, 1998.Google Scholar
  13. Kibe, S., H. Yano, S. P. Deshpande, K. Morishige, Y. Maekawa, K. Imagawa, Y. Arimoto, and M. J. Neish, In-situ debris observation activities in Japan, Acta Astronaut., 1997 (submitted).Google Scholar
  14. Kitazawa, Y., K. Imagawa, Y. Okada, A. Fujiwara, T. Kadono, and R. Amagata, Hypervelocity impact tests and post-flight analysis on MFD dust collectors, Presented at the 21st Int’l Symp. on Space Tech. and Sci., Saitama, Japan, ISTS 98-m-14, 1998a.Google Scholar
  15. Kitazawa, Y., R. Amagata, K. Kawachi, K. Fusegi, K. Imagawa, and Y. Okada, Development of the Micro-Particle Capturer on the JEM Exposed Facility, Proc. 14th Space Station. Symp., 105–106, 1998b (main text in Japanese).Google Scholar
  16. Kuriki, K., M. Takei, N. Wakasugi, and T. Yasaka, Meteoroid and Space Debris Impact Investigations in SFU Post Flight Analysis Activities: Preliminary Results and Further Directions, ISAS Report, 666, ISAS, Sagamihara, Kanagawa, Japan, 1997.Google Scholar
  17. Love, S. and D. E. Brownlee, A direct measurement of the terrestrial mass accretion rate of cosmic dust, Science, 262, 550–553, 1993.CrossRefGoogle Scholar
  18. Maag, C. R. and W. K. Linder, Results of space shuttle intact particle capture experiments, in Hypervelocity Impacts in Space, edited by J. A. M. McDonnell, pp. 186–190, University of Kent at Canterbury, U.K., 1992.Google Scholar
  19. Maag, C. R., S. P. Deshpande, and N. Johnson, On the existence of debris clouds in the space station orbit—Final results of the EuroMir ’95 impact detector, Proc. Second Euro. Conf. on Space Debris, ESA-SP-393, 201–205, 1997.Google Scholar
  20. Maurette, M., G. Immel, C. Hammer, R. Harvey, G. Kurat, and S. Taylor, Collection of IDPs from the Greenland and Antarctic ice sheets, in Analysis f Interplanetary Dust, AIP Conf. Proc. 310, edited by M. E. Zolensky, T. L. Wilkinson, F. J. Rietmeijer, and G. L. Flynn, pp. 277–289, AIP Press, 1994.Google Scholar
  21. McDonnell, J. A. M., Microparticle studies by space instrumentation, in Cosmic Dust, edited by J. A. M. McDonnell, pp. 337–426, John Wiley & Sons, New York, 1978.Google Scholar
  22. McDonnell, J. A. M. and K. Sullivan, Hypervelocity impacts on space detectors: Decoding the space environment (LDEF, MAP A0023 Experiment), Proc. First LDEF Post-Retrieval Symp.,NASACP-3134, 443–458, 1992.Google Scholar
  23. McDonnell, J. A. M., P. R. Ratcliff, S. F. Green, N. McBride, and I. Collier, Microparticle populations at LEO altitudes: Recent spacecraft measurements, Icarus, 127, 55–64, 1997.CrossRefGoogle Scholar
  24. Morishige, K., H. Yano, Y. Maekawa, S. P. Deshpande, M. J. Neish, and S. Kibe, Three dimensional analysis of impact crater profiles on the SFU spacecraft’s Teflon radiators, Adv. Space Res., 23(1), 113–117, 1999.CrossRefGoogle Scholar
  25. Mulholland, J. D., S. F. Singer, J. P. Oliver, J. L. Weinberg, W. J. Cooke, N. L. Montague, J. J. Wortman, P. C. Kassel, and W. H. Kinard, IDE Spatiotemporal impact fluxes and high time-resolution studies of multi-impact events and long-lived debris clouds, Proc. First LDEF Post-Retrieval Symp., NASA CP-3134, 517–527, 1992.Google Scholar
  26. National Research Council (U.S.A.)—Committee on Space Debris/Aeronautics and Space Engineering Board/Commission on Engineering and Technical Systems, Orbital Debris: A Technical Assessment, 210 pp., National Academy Press, Washington, D.C., 1995.Google Scholar
  27. Neish, M. J., S. P. Deshpande, S. Kibe, H. Yano, Y. Kitazawa, and S. Yamamoto, Micrometeoroid and space debris impacts on the Space Flyer Unit and hypervelocity impact calibration of its materials, Proc. Second Euro. Conf. Space Debris, ESA-SP-393, 177–182, 1997.Google Scholar
  28. Nogami, K., R. Ohmori, and H. Yano, Bombardment of the microparticles on the piezo-film using a two-stage light gas gun, Bull. Gen. Edu. Dokkyo Univ. Sch. of Med., Tochigi, Japan, 20, 31–39, 1997 (main text in Japanese).Google Scholar
  29. See, T. H., M. Allbrooks, D. Atkinson, C. Simon, and M. E. Zolensky, Meteoroid and Debris Impact Features Documented on the Long Duration Exposure Facility: A Preliminary Report, NASA/JSC Publ. No. 24608, Planetary Science Branch Publication No. 84, NASA/JSC, Houston, U.S.A., 1990.Google Scholar
  30. Space Applications Services, UniSpace Kent, Mare Crisium, and ONERA/CERTS-DERTS, Hubble Space Telescope Micrometeoroid and Debris Post Flight Analysis, Prepared by W. C. Carey, M. Fowler, A. D. Griffiths, J. A. M. McDonnell, J.-C. Mandeville, K. Nichol, A. Quant, N. R. G. Shrine, T. J. Stevenson, E. A. Taylor, and H. Yano, 21 pp., ESA/ESTEC Contract Report, No. 10830/94/NL/JG, ESA/ESTEC, Noordwijk, The Netherlands, 1995.Google Scholar
  31. Stevenson, T. J., Eureca TiCCE—A nine month survey of cosmic dust and space debris at 500 km altitude, J. Brit. Interplanet. Soc., 41, 429–432, 1988.Google Scholar
  32. Taylor, E. A., N. Shrine, N. McBride, S. F. Green, J. A. M. McDonnell, and G. Drolshagen, Space debris impacts on HST and EuReCa solar arrays compared with LDEF using a new glass-Al conversion, Adv. Space Res., 1999 (in press).Google Scholar
  33. The Steering Committee for the Cosmic Dust Collection Facility (Brownlee, D. E., et al.), Cosmic Dust Collection Facility: Science Objectives and Programmatic Relations, NASA-JSC Report, NASA/JSC, Houston, 1988.Google Scholar
  34. Tsou, P., Silica Aerogel captures cosmic dust intact, J. Non-Crystalline Solids, 186, 415–427, 1995.CrossRefGoogle Scholar
  35. UniSpace Kent, Space Application Services, C. R. Maag, Mare Crisium, and ONERA/CERTS-DERTS, EuReCa Meteoroid and Debris Post Flight Investigation, 121 pp., Prepared by I. Collier, A. D. Griffiths, L. Kay, N. R. G. Shrine, and H. Yano, ESA/ESTEC Contract Report, No. 10522/93/NL/JG, ESA/ESTEC, Noordwijk, The Netherlands, 1994.Google Scholar
  36. Vellinga, J. M., C. L. Craig, R. T. Giellis, C. E. Rasbach, J. J. Rogers, M. G. Thornton, W. H. Willcockson, D. E. Brownlee, and K. L. Atkins, Environmental design considerations for STARDUST, Presented at the 27th Int’l Conf. on Environmental Systems, Lake Tahoe, Nevada, USA, July 14–17, 1997.Google Scholar
  37. Warren, J. L., H. A. Zook, J. H. Allton, U. S. Clanton, C. B. Dardano, J. A. Holder, R. R. Marlow, R. A. Schultz, L. A. Watts, and S. J. Wentworth, The detection and observation of meteoroid and space debris impact features on the Solar Max satellite, Proc. Lunar Planet. Soc. Conf., 19, 641–657, 1989.Google Scholar
  38. Yano, H., Cosmic Dust Collectors and Detectors (CDCD) for the Japan Experiment au]Module-Exposed Facility (JEM-EF), Proc. the 19th Int’l Symp. on Space Tech. and Sci., 1017–1028, 1994.Google Scholar
  39. Yano, H., The Physics and Chemistry of Hypervelocity Impact Signatures on Spacecraft: Meteoroids and Space Debris, Ph.D. Thesis, University of Kent at Canterbury, 286 pp., Kent, U. K., 1995.Google Scholar
  40. Yano, H. and Y. Kitazawa, Hybrid dust collector and detector for space station and planetary exploration, Proc. the 21st Int’l Symp. on Space Tech. and Sci., 1819–1825, 1998.Google Scholar
  41. Yano, H., P. R. Ratcliff, and J. A. M. McDonnell, Dust Watch as a Model Payload for Columbus-EVP, Proposal for European Space Agency-SPUP Space Station Freedom Columbus Attached Pressurized Module, 1993.Google Scholar
  42. Yano, H., I. Collier, N. R. G. Shrine, and J. A. M. McDonnell, Microscopic and chemical analyses of major impact craters on Timeband Capture Cell Experiment of EuReCa spacecraft, Adv. Space Res., 17(12), 189–192, 1996.CrossRefGoogle Scholar
  43. Yano, H., C. Engrand, and M. Maurette, Hypervelocity impact experiments using Antarctic micrometeorites, Antarct. Meteorit., 21, 213–215, 1996.Google Scholar
  44. Yano, H., S. Kibe, S. P. Deshpande, and M. J. Neish, The first results of meteoroid and debris impact analyses on the Space Flyer Unit, Adv. Space Res., 20(8), 1489–1494, 1997.CrossRefGoogle Scholar
  45. Yano, H., K. Morishige, S. P. Deshpande, Y. Maekawa, S. Kibe, M. J. Neish, and E. A. Taylor, Origins of micro-craters on the SFU spacecraft derived from elemental and morphological analyses, Adv. Space Res., 25(2), 293–298, 1999.CrossRefGoogle Scholar
  46. Zolensky, M. E., H. A. Zook, F. Hörz, D. R. Atkinson, C. R. Coobs, A. J. Watts, C. B. Dardano, T. H. See, C. G. Simon, and W. H. Kinard, Interim report of the Meteoroid and Debris Special Investigation Group, Proc. Second LDEF Post-Retrieval Symp., NASA CP-3194, 1993.Google Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 1999

Authors and Affiliations

  1. 1.Earth Science and Solar System Exploration DivisionNASA Johnson Space CenterHoustonUSA

Personalised recommendations