The action of aminoguanidine on the liver of trained diabetic rats

Abstract

Background

This study evaluated the effect of aminoguanidine on liver of diabetic rats subject to physical exercises using histological and histochemical techniques.

Methods

The rats used in this study were divided into five groups: sedentary control, sedentary diabetic, trained diabetic, sedentary diabetic and treated with aminoguanidine, trained diabetic and treated with aminoguanidine.

Results

The results showed no effect of aminoguanidine on the liver tissue, although there was improvement with exercise training showing cytological, morpho-histological and histochemical alterations in liver cells of animals from groups trained diabetic and/or treated diabetic compared to those individuals in the sedentary control and sedentary diabetic. These changes included: hepatocytes hypertrophy, presence and distribution of polysaccharides in the hepatocytes cytoplasm and, especially, congestion of the liver blood vessels.

Conclusion

Our results suggest that aminoguanidine is not hepatotoxic, when used at dosage of 1 g/L for the treatment of diabetes complications, and confirmed that the practice of moderate physical exercise assuaged the damage caused by diabetes without the use of insulin.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  1. 1.

    Petersen KF, Shulman GI: Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardiol 2002,90(5A):11G-18G.

    CAS  PubMed  Google Scholar 

  2. 2.

    Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, et al.: 10-year follow-up of diabetes incidence and weight loss in the diabetes prevetion programs outcomes study. Lancet 2009,374(9707):1677–1686.

    PubMed  Google Scholar 

  3. 3.

    Corigliano G, Iazzetta N, Corigliano M, Strollo F: Blood glucose changes in diabetic children and adolescents engaged in most common sports activities. Acta Biomed 2006, 77: 26–33.

    PubMed  Google Scholar 

  4. 4.

    Arkinstall MJ, Bruce CR, Clark SA, Rickards CA, Burke LM, Hawley JA: Regulation of fuel metabolism by preexercise muscle glycogen content and exercise intensity. J Appl Physiol 2004,97(6):2275–2283. 10.1152/japplphysiol.00421.2004

    CAS  PubMed  Google Scholar 

  5. 5.

    Ostergard T, Jessen N, Schmitz O, Mandarino LJ: The effect of exercise, training, and inactivity on insulin sensitivity in diabetics and their relatives: what is new? Appl Physiol Nutr Metab 2007,32(3):541–548. 10.1139/H07-031

    PubMed  Google Scholar 

  6. 6.

    Luciano E: Influências do treinamento físico sobre o metabolismo de carboidratos em ratos diabéticos experimentais. São Paulo: PhD Thesis of the University of São Paulo-USP; 1995.

    Google Scholar 

  7. 7.

    Tancrede G, Rosseau-Migneron S, Nadeau A: Beneficial effects of physical training in rats with a mild streptozotocin–induced Diabetes mellitus. Diabetes 1982, 31: 406–409. 10.2337/diabetes.31.5.406

    CAS  PubMed  Google Scholar 

  8. 8.

    Guyton AC: Fisiologia Humana. Rio de Janeiro: Guanabara Koogan; 2011.

    Google Scholar 

  9. 9.

    Nadeu M, Peronnet F: Fisiologia Aplicada na Atividade Física. São Paulo: Manole; 1985.

    Google Scholar 

  10. 10.

    Devangelio E, Santilli F, Formoso G, Ferroni P, Bucciarelli L, Michetti N, et al.: Soluble RAGE in type 2 diabetes: association with oxidative stress. Free Radic Biol Med 2007,43(4):511–518. 10.1016/j.freeradbiomed.2007.03.015

    CAS  PubMed  Google Scholar 

  11. 11.

    Corman B, Duriez M, Poitevin P, Heudes D, Bruvenal P, Tedqui A, Levy BI: Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proc Natl Acad Sci USA 1998,95(3):1301–1306. 10.1073/pnas.95.3.1301

    CAS  PubMed  Google Scholar 

  12. 12.

    Forbes JM, Soldatos G, Thomas MC: Below the radar: advanced glycation end products that detour “around the side”. Is HbA1c not an accurate enough predictor of long term progression and glycaemic control in diabetes? Clin Biochem Rev 2005,26(4):123–134.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Mendez JD: Productos finales de glicacion avanzada y complicaciones crônicas de la diabetes mellitus. Gac Med Mex 2003,139(1):49–55.

    PubMed  Google Scholar 

  14. 14.

    Thornalley P: Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 2003, 419: 31–40. 10.1016/j.abb.2003.08.013

    CAS  PubMed  Google Scholar 

  15. 15.

    Szabó C, Ferrer-Sueta G, Zingarelli B, Southland GJ, Salzman AL, Radi R: Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-induced oxidative damage. J Biol Chem 1997,272(14):9030–9036. 10.1074/jbc.272.14.9030

    PubMed  Google Scholar 

  16. 16.

    Oliveira LM: Histopatologia de fígados de peixes Oreochromis niloticus expostos em águas e sedimentos do rio Guaecá–São Sebastião, SP–Impactado pelo vazamento do oleoduto OSBAT. São Paulo: Monography of the University of São Paulo State-UNESP; 2006.

    Google Scholar 

  17. 17.

    Hinton DE, Laurén DJ: Liver structural alterations accompanying chronic toxicity in fishes: potencial biomarkers of exposure. In Biomarkers of Environmental Contamination. Edited by: Mccarthy JF, Shuggart LR. Boca Raton: Lewis Publishers; 1990:17–57.

    Google Scholar 

  18. 18.

    Stoppa GR, Cesquini M, Roman EAFR, Ogo SH, Torsoni MA: Aminoguanidine prevented impairment of blood antioxidant system in insulin-dependent diabetic rats. Life Sci 2006,78(12):1352–1361. 10.1016/j.lfs.2005.07.031

    CAS  PubMed  Google Scholar 

  19. 19.

    Billat V, Lepretre PM, Heugas AM, Laurence MH, Salim D, Koralsztein JP: Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc 2003,35(2):297–304. 10.1249/01.MSS.0000053556.59992.A9

    PubMed  Google Scholar 

  20. 20.

    Svedahl K, Macintosh BR: Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol 2003,28(2):299–323. 10.1139/h03-023

    CAS  PubMed  Google Scholar 

  21. 21.

    Heck HAD, Casanova-Schmitz M, Dodd PB, Schachter EN, Witek TJ, Tosun T: Formaldehyde (CH2O) concentrations in the blood of humans and Fischer-344 rats exposed to CH2O under controlled conditions. Am Ind Hyg Assoc J 1985,46(1):1–3. 10.1080/15298668591394275

    CAS  PubMed  Google Scholar 

  22. 22.

    Manchado FB, Gobatto CA, Contarteze RVL, Papoti M, Mello MAR: Maximal lactate steady state in running rats. J Exerc Physiol online 2005, 8: 29–35.

    Google Scholar 

  23. 23.

    Pearse AGE: Histochemistry theoretical and applied. Livingstone: Churchill; 1985:1985.

    Google Scholar 

  24. 24.

    Junqueira LCU, Junqueira LMMS: Técnicas Básicas de Citologia e Histologia. São Paulo: Santos; 1983.

    Google Scholar 

  25. 25.

    Jakus V, Rietbrock N: Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 2004,53(2):131–142.

    CAS  PubMed  Google Scholar 

  26. 26.

    Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A: Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 1986,232(4758):1629–1632. 10.1126/science.3487117

    CAS  PubMed  Google Scholar 

  27. 27.

    Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, et al.: Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 2005,83(11):876–886. 10.1007/s00109-005-0688-7

    CAS  Google Scholar 

  28. 28.

    Ahmed N: Advanced glycation endproducts–role in pathology of diabetic complications. Diabetes Res Clin Pract 2005,67(1):3–21. 10.1016/j.diabres.2004.09.004

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Giardino I, Fard AK, Hatchell DL, Brownlee M: Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 1998,47(7):1114–1120. 10.2337/diabetes.47.7.1114

    CAS  PubMed  Google Scholar 

  30. 30.

    Carvalho HF, Colares-Buzato CB: Células: Uma abordagem multidisciplinar. São Paulo: Manole; 1970.

    Google Scholar 

  31. 31.

    Junqueira LC, Carneiro J: Histologia Básica. Rio de Janeiro: Guanabara Koogan; 2008.

    Google Scholar 

  32. 32.

    Ross MH, Pawlina W: Histologia Texto e Atlas-em correlação com biologia celular e molecular. Rio de Janeiro: Guanabara Koogan; 2008.

    Google Scholar 

  33. 33.

    Remedio RN: Alterações Histoquímicas e ultraestruturais do fígado e intestino grosso de ratos diabéticos tipo I e os efeitos do treinamento físico. São Paulo: Dissertation (Master in Biological Sciences) of the University of São Paulo State-UNESP; 2010.

    Google Scholar 

  34. 34.

    Rhodes LD, Myers MS, Gronlund WD, Mccain BB: Epizootic characteristics of hepatic and ranal lesions in English sole, Parophris vetulus, from Puget Sound. J Fish Biol 1987, 38: 395–407.

    Google Scholar 

  35. 35.

    Teh SJ, Adams SM, Hinton DE: Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminant stress. Aquat Toxicol 1997, 37: 51–70. 10.1016/S0166-445X(96)00808-9

    CAS  Google Scholar 

  36. 36.

    Bond JS: Failure to demonstrate increased protein turnover and intracellular proteinase activity in livers of mice with stretozotocin-induced diabetes. Diabetes 1980,29(8):648–654. 10.2337/diabetes.29.8.648

    CAS  PubMed  Google Scholar 

  37. 37.

    Bahnaks BR, Gold AH: Effects of Alloxan diabetes on the turnover of rat liver Glycogen Synthase. J Biol Chem 1982,257(15):8775–8780.

    Google Scholar 

  38. 38.

    Lehninger AL, Nelson DL, Cox MM: Princípios de Bioquímica. São Paulo: Sarvier; 2004.

    Google Scholar 

  39. 39.

    Vallance-Owen J: Liver glycogen in diabetes mellitus. J Clin Pathol 1952,5(1):42–53. 10.1136/jcp.5.1.42

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Whitton PD, Hems DA: Glycogen synthesis in the perfused liver of streptozotocin-diabetic rats. Biochem J 1975,150(2):153–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Clore JN, Post EP, Baily DJ, Nestler JE, Blackard WG: Evidence for increased liver glycogen in patients with noninsulindependent diabetes mellitus after a 3-day fast. J Clin Endocrino Metab 1992,74(3):660–666. 10.1210/jc.74.3.660

    CAS  Google Scholar 

  42. 42.

    Gobatto CA: Alterações metabólicas decorrentes do treinamento físico em ratos previamente desnutridos e recuperados. São Paulo: Dissertation (Master in Biological Sciences) of the University of Campinas-UNICAMP; 1993.

    Google Scholar 

  43. 43.

    Leme JA, Gomes RJ, De Mello MA, Luciano E: Effects of short-term physical training on the liver IGF-I in diabetic rats. Growth Factors 2007,25(1):9–14. 10.1080/08977190701210693

    PubMed  Google Scholar 

  44. 44.

    Ferranini E, Lanfranchi A, Rohner-Jeanrenaud F, Manfredini G, Van de Werve G: Influence of long-term diabetes on liver glycogen metabolism in the rat. Metabolism 1990,39(10):1082–1088. 10.1016/0026-0495(90)90170-H

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Izabel Camargo-Mathias.

Additional information

Competing interests

The authors had no conflict of interest.

Authors’ contributions

ETMN conceived of the study, wrote draft the manuscript. PRO conceived of the study, and participated in its design and coordination. LPS wrote draft the manuscript. FDC-P wrote draft the manuscript. MAD and AZ conceived of the study. MIC-M conceived of the study, participated in its design and coordination and revised the manuscript. All authors read and approved the final manuscript.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Authors’ original file for figure 2

Rights and permissions

Reprints and Permissions

About this article

Cite this article

e Nico, E.T.M., de Oliveira, P.R., de Souza, L.P. et al. The action of aminoguanidine on the liver of trained diabetic rats. J Diabetes Metab Disord 12, 40 (2013). https://doi.org/10.1186/2251-6581-12-40

Download citation

Keywords

  • Aminoguanidine
  • Diabetes type 1
  • Rats
  • Liver
  • Physical exercises