Advertisement

Induction of potent systemic anti-melanoma immunity through intratumoral CD40 activation and checkpoint blockade

  • Manisha Singh
  • Zhimin Dai
  • Hiep Khong
  • Christina Vianden
  • Mark Cantwell
  • Willem Overwijk
Open Access
Poster presentation

Keywords

Melanoma Cytokine Release Syndrome Agonistic CD40 Agonistic CD40 Antibody Checkpoint Blockage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Purpose

Agonistic CD40 antibodies generate strong tumor specific CD8 T cell response and anti-tumor activity; however systemic anti-CD40 therapy has been associated with cytokine release syndrome and liver toxicity. We studied the anti-melanoma activity and mechanism of action of a recombinant adenovirus expressing a stabilized version of CD40L (rAd.CD40L) by local intratumoral delivery approach to treat metastatic melanoma.

Experimental design

Mice bearing established B16 melanomas were treated intratumorally with rAd.CD40L (ISF35) or rAd5 control virus and received anti-PD1 plus anti-CTLA-4 systemically. Anti-tumor effects of mono or combination therapies were determined by mice survival and tumor growth measurement. The mechanistic contribution of immune cells to this therapy was determined by using antibody blockades. Immune cell infiltrates in tumor and expression of negative regulators on these cells were analyzed by flow cytometry.

Results

Intratumoral administration of rAd.CD40L generated systemic anti-tumor immunity mediated by CD8 T cells and suppressed both injected and distant uninjected wild-type B16.F10 melanomas. However, tumors did not completely regress after therapy. Analysis of tumor-infiltrating leukocytes revealed that almost 100% of tumor-infiltrating CD8 T cells in the rAd.CD40L-treated group had up-regulation of the T cell inhibitory molecule PD-1. Combined treatment with rAd.CD40L plus anti-PD1 was highly synergistic and induced higher number of melanoma specific CD8 T cells systemically. Concomitant CTLA-4 blockade further improved the efficacy of treatment and led to complete regression of melanoma in about 50% of mice and generated memory CD8 T cells response.

Conclusion

Immunotherapy based on intratumoral CD40 activation is potentiated by PD-1 and CTLA-4 blockade and this combination generates functional and long-lasting anti-tumor CD8 T cell immunity that systemically suppresses melanoma metastases. These results suggest combination of rAd.CD40L with checkpoint blockade inhibitors may offer a promising immunotherapeutic option of metastatic melanoma that does not respond to checkpoint blockage monotherapy.

Copyright information

© Singh et al. 2015

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors and Affiliations

  • Manisha Singh
    • 1
  • Zhimin Dai
    • 1
  • Hiep Khong
    • 1
  • Christina Vianden
    • 1
  • Mark Cantwell
    • 2
  • Willem Overwijk
    • 1
  1. 1.University of Texas - MD Anderson Cancer CenterHoustonUSA
  2. 2.Memgen, LLCSan DiegoUSA

Personalised recommendations