BMC Neuroscience

, 10:P138 | Cite as

Controlling neuronal fluctuations for directed exploration during reinforcement learning

  • Orlando Areval
  • Klaus Pawelzik
Open Access
Poster presentation


Animal Model Noise Level Reinforcement Learning Large Network Information Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Neuronal and synaptic fluctuations have both been proposed to underly reward controlled learning [1, 2] and have been used to explain song learning in songbird area RA [3]. The songbird area LMAN provides perturbations to area RA that are necessary for learning [4], suggesting that LMAN might target specific subsets of RA neurons and control the corresponding noise level for directed experimentation. Here we explore this hypothesis by investigating algorithms for controlling the amount of noise in order to yield efficient reinforcement learning in large networks. Our research is guided by previous work on exploration for learning which exploits information gain [5]. We find that noise control can strongly increase learning efficiency thereby attenuating the curse of dimensionality. Our results suggest that area LMAN controls experimentation by targeted control and injection of noise into RA, which might have testable implications also for learning in other motor pathways.


  1. 1.
    Xie X, Seung HS: Learning in neural networks by reinforcement of irregular spiking. Physical Review E 69. 2004, 041909-10.1103/PhysRevE.69.041909.Google Scholar
  2. 2.
    Seung HS: Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron. 2003, 40: 1063-1073. 10.1016/S0896-6273(03)00761-X.PubMedCrossRefGoogle Scholar
  3. 3.
    Fiete I, Fee M, Seung HS: Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances. Journal of Neurophysiology. 2007, 98: 2038-2057. 10.1152/jn.01311.2006.PubMedCrossRefGoogle Scholar
  4. 4.
    Ölveczky B, Andalman A, Fee M: Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol. 2005, 3: e153-10.1371/journal.pbio.0030153.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Si B, Pawelzik K: Robot exploration by subjectively maximizing objective information gain. Robotics and Biometrics IEEE International Conference. 2004, 930-935.Google Scholar

Copyright information

© Areval and Pawelzik; licensee BioMed Central Ltd. 2009

This article is published under license to BioMed Central Ltd.

Authors and Affiliations

  1. 1.Institute for Theoretical Physics, University BremenBremenGermany

Personalised recommendations