3D Printing in Medicine

, 2:3 | Cite as

3D printing in medicine of congenital heart diseases

  • Shi-Joon Yoo
  • Omar Thabit
  • Eul Kyung Kim
  • Haruki Ide
  • Deane Yim
  • Anreea Dragulescu
  • Mike Seed
  • Lars Grosse-Wortmann
  • Glen van Arsdell


Congenital heart diseases causing significant hemodynamic and functional consequences require surgical repair. Understanding of the precise surgical anatomy is often challenging and can be inadequate or wrong. Modern high resolution imaging techniques and 3D printing technology allow 3D printing of the replicas of the patient’s heart for precise understanding of the complex anatomy, hands-on simulation of surgical and interventional procedures, and morphology teaching of the medical professionals and patients. CT or MR images obtained with ECG-gating and breath-holding or respiration navigation are best suited for 3D printing. 3D echocardiograms are not ideal but can be used for printing limited areas of interest such as cardiac valves and ventricular septum. Although the print materials still require optimization for representation of cardiovascular tissues and valves, the surgeons find the models suitable for practicing closure of the septal defects, application of the baffles within the ventricles, reconstructing the aortic arch, and arterial switch procedure. Hands-on surgical training (HOST) on models may soon become a mandatory component of congenital heart disease surgery program. 3D printing will expand its utilization with further improvement of the use of echocardiographic data and image fusion algorithm across multiple imaging modalities and development of new printing materials. Bioprinting of implants such as stents, patches and artificial valves and tissue engineering of a part of or whole heart using the patient’s own cells will open the door to a new era of personalized medicine.


3D printing Congenital heart disease Surgical simulation Surgical training 



computer aided design


computed tomography


digital Imaging and communication in medicine




hands-on surgical training


magnetic resonance


steady state free precession


stereolithography or standard tessellation language



  1. 1.
    Dolk H, Loane M, Garne E. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation. 2011;123:841–9. doi: Scholar
  2. 2.
    Giroud JM, Jacobs JP, Spicer D, Backer C, Martin GR, Franklin RC, et al. Report from the international society for nomenclature of paediatric and congenital heart disease: creation of a visual encyclopedia illustrating the terms and definitions of the international pediatric and congenital cardiac code. World J Pediatr Congenit Heart Surg. 2010;1(3):300–13. doi: Scholar
  3. 3.
    Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK, et al. Medical 3D printing for the radiologist. Radiographics. 2015;35(7):1965–88. doi: Scholar
  4. 4.
    Matsumoto JS, Morris JM, Foley TA, Williamson EE, Leng S, McGee KP, et al. Three-dimensional physical modeling: applications and experience at mayo clinic. Radiographics. 2015;35(7):1989–2006. doi: Scholar
  5. 5.
    Binder TM, Moertl D, Mundigler G, Rehak G, Franke M, Delle-Karth G, et al. Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data: in vitro and in vivo validation. J Am Coll Cardiol. 2000;35:230–7.CrossRefGoogle Scholar
  6. 6.
    Gilon D, Cape EG, Handschumacher MD, Song JK, Solheim J, VanAuker M, et al. Effect of three-dimensional valve shape on the hemodynamics of aortic stenosis: three-dimensional echocardiographic stereolithography and patient studies. J Am Coll Cardiol. 2002;40(8):1479–86.CrossRefGoogle Scholar
  7. 7.
    Mottl-Link S, Boettger T, Krueger JJ, Rietdorf U, Schnackenburg B, Ewert P, et al. Images in cardiovascular medicine. Cast of complex congenital heartmalformation in a living patient. Circulation. 2005;112:e356–7.CrossRefGoogle Scholar
  8. 8.
    Noecker AM, Chen JF, Zhou Q, White RD, Kopcak MW, Arruda MJ, et al. Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J. 2006;52(3):349–53. doi: Scholar
  9. 9.
    Ngan EM, Rebeyka IM, Ross DB, Hirji M, Wolfaardt JF, Seelaus R, et al. The rapid prototyping of anatomic models in pulmonary atresia. J Thorac Cardiovasc Surg. 2006;132:264–9.CrossRefGoogle Scholar
  10. 10.
    Greil GF, Wolf I, Kuettner A, Fenchel M, Miller S, Martirosian P, et al. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol. 2007;96(3):176–85. doi: Scholar
  11. 11.
    Greil GF, Kuettner A, Flohr T, Grasruck M, Sieverding L, Meinzer HP, et al. High-resolution reconstruction of a waxed heart specimen with flat panel volume computed tomography and rapid prototyping. J Comput Assist Tomogr. 2007;31(3):444–8.CrossRefGoogle Scholar
  12. 12.
    Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation. 2008;117(18):2388–94. doi: Scholar
  13. 13.
    Armillotta A, Bonhoeffer P, Dubini G, Ferragina S, Migliavacca F, Sala G, et al. Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation. Proc Inst Mech Eng H. 2007;221(4):407–16.CrossRefGoogle Scholar
  14. 14.
    Schievano S, Migliavacca F, Coats L, Khambadkone S, Carminati M, Wilson N, et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology. 2007;242:490–7.CrossRefGoogle Scholar
  15. 15.
    Kim MS, Hansgen AR, Carroll JD. Use of rapid prototypingin the care of patients with structural heart disease. Trends Cardiovasc Med. 2008;18(6):210–6. doi: Scholar
  16. 16.
    Jacobs S, Grunert R, Mohr FW, Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008;7(1):6–9.CrossRefGoogle Scholar
  17. 17.
    Mottl-Link S, Hübler M, Kühne T, Rietdorf U, Krueger JJ, Schnackenburg B, et al. Physical models aiding in complex congenital heart surgery. Ann Thorac Surg. 2008;86(1):273–7. doi: Scholar
  18. 18.
    Sodian R, Weber S, Markert M, Loeff M, Lueth T, Weis FC, et al. Pediatric cardiac transplantation: three dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg. 2008;136(4):1098–9. doi: Scholar
  19. 19.
    Riesenkampff E, Rietdorf U, Wolf I, Schnackenburg B, Ewert P, Huebler M, et al. The practical clinical value of three-dimensional models of complex congenitally malformed hearts. J Thorac Cardiovasc Surg. 2009;138(3):571–80. doi: Scholar
  20. 20.
    Shiraishi I, Yamagishi M, Hamaoka K, Fukuzawa M, Yagihara T. Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur J Cardiothorac Surg. 2010;37:302–6.PubMedGoogle Scholar
  21. 21.
    Farooqi KM, Nielsen JC, Uppu SC, Srivastava S, Parness IA, Sanz J, et al. Use of 3-dimensional printing to demonstrate complex intracardiac relationships in double-outlet right ventricle for surgical planning. Circ Cardiovasc Imaging. 2015;8(5):e003043. doi: Scholar
  22. 22.
    Costello JP, Olivieri LJ, Krieger A, Thabit O, Marshall MB, Yoo SJ, et al. Utilizing three-dimensional printing technology to assess the feasibility of high fidelity synthetic ventricular septal defect models for simulation in medical education. World J Pediatr Congenit Heart Surg. 2014;5(3):421–6. doi: Scholar
  23. 23.
    Olivieri L, Krieger A, Chen MY, Kim P, Kanter JP. 3D heart model guides complex stent angioplasty of pulmonary venous baffle obstruction in a Mustard repair of D-TGA. Int J Cardiol. 2014;172(2):e297–8. doi: Scholar
  24. 24.
    Yoo SJ, Lo Rito M, Seed M, Grosse-Wortmann L. Magnetic resonance imaging as a decision-making tool in congenital heart disease surgery. Operative Tech Thorac Cardiovascul Surg. 2014;19:152–63.CrossRefGoogle Scholar
  25. 25.
    Olivieri LJ, Krieger A, Loke YH, Nath DS, Kim PC, Sable CA. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr. 2015;28(4):392–7. doi: Scholar
  26. 26.
    Farooqi KM, Sengupta PP. Echocardiography and three-dimensional printing: sound ideas to touch a heart. J Am Soc Echocardiogra. 2015;28(4):398–404. doi: Scholar
  27. 27.
    Costello JP, Olivieri LJ, Su L, Krieger A, Alfares F, Thabit O, et al. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis. 2015;10(2):185–90. doi: Scholar
  28. 28.
    Kiraly L, Tofeig M, Jha NK, Talo H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair. Interact Cardiovasc Thorac Surg. 2016;22(2):238–40. doi: Scholar
  29. 29.
    Valverde I, Gomez G, Coserria JF, Suarez-Mejias C, Uribe S, Sotelo J, et al. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv. 2015;85(6):1006–12. doi: Scholar
  30. 30.
    Valverde I, Gomez G, Gonzalez A, Suarez-Mejias C, Adsuar A, Coserria JF, et al. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure. Cardiol Young. 2015;25(4):698–704. doi: Scholar
  31. 31.
    Ma XJ, Tao L, Chen X, Li W, Peng ZY, Chen Y, et al. Clinical application of three-dimensional reconstruction and rapid prototyping technology of multislice spiral computed tomography angiography for the repair of ventricular septal defect of tetralogy of Fallot. Genet Mol Res. 2015;14(1):1301–9. doi: Scholar
  32. 32.
    Biglino G, Capelli C, Wray J, Schievano S, Leaver LK, Khambadkone S, et al. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open. 2015;5(4):e007165. doi: Scholar
  33. 33.
    Yoo SJ, Thabit O, Lee W, Goo HW, van Arsdell GS (2013) Double outlet right ventricle in your hands. Web publication.
  34. 34.
    Yoo SJ, Thabit O, Lee W, Goo HW, Yim D, Ide H, van Arsdell GS (2015) Most peculiar hearts in your hands. Criss-cross, superoinferior, twisted, topsy-turvy, etc. What do they all mean? Web publication.
  35. 35.
    Messina M, Rigsby C, Deng J, Bi X, McNeal G (2013) 3D navigator-gated inversion recovery FLASH (Nav_IR_Flash) with blood pool contrast agent. Magnetom Flash 3/2013.Google Scholar
  36. 36.
    Han F, Rapacchi S, Khan S, Ayad I, Salusky I, Gabriel S, et al. Four-dimensional, multiphase, steady-state imaging with contrast enhancement (MUSIC) in the heart: a feasibility study in children. Magn Reson Med. 2015;74(4):1042–9. doi: Epub 2014 Oct 9.CrossRefGoogle Scholar
  37. 37.
    Samuel BP, Pinto C, Pietila T, Vettukattil JJ. Ultrasound-derived three-dimensional printing in congenital heart disease. J Digit Imaging. 2015;28(4):459–61. doi: Scholar
  38. 38.
    Poterucha JT, Foley TA, Taggart NW. Percutaneous pulmonary valve implantation in a native outflow tract: 3-dimensional DynaCT rotational angiographic reconstruction and 3-dimensional printed model. JACC Cardiovasc Interv. 2014;7(10):e151–2. doi: Scholar
  39. 39.
    Yoo SJ, Seo JW, Lim TH, Park IS, Hong CY, Song MG, et al. Hearts with twisted atrioventricular connections: findings at MR imaging. Radiology. 1993;188:109–13.CrossRefGoogle Scholar
  40. 40.
    Kurup HK, Samuel BP, Vettukattil JJ. Hybrid 3D printing: a game-changer in personalized cardiac medicine? Expert Rev Cardiovasc Ther. 2015;13(12):1281–4. doi: Epub 2015 Oct 14.CrossRefGoogle Scholar
  41. 41.
    Kossivas F, Angeli S, Kafouris D, Patrickios CS, Tzagarakis V, Constantinides C. MRI-based morphological modeling, synthesis and characterization of cardiac tissue-mimicking materials. Biomed Mater. 2012;7(3):035006. doi: Scholar
  42. 42.
    Giannopouk AA, Chepelev L, Shikh A, Wang A, Dang W, Akyuz E, Hong C, Wake N, Pietila T, Dydynski PB, Mitsouras D, Rybicki FJ (2015) 3D printed ventricular septal defect patch: a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing, 3D Printing in Medicine 1:3 doi:
  43. 43.
    Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials. 2012;33(6):1782–90. doi: Scholar
  44. 44.
    Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther. 2015;15(8):1155–72. doi: Scholar
  45. 45.
    Mosadegh B, Xiong G, Dunham S, et al. Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater. 2015;10(3):034002. doi: Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Shi-Joon Yoo
    • 1
    • 2
  • Omar Thabit
    • 1
    • 2
  • Eul Kyung Kim
    • 4
  • Haruki Ide
    • 2
  • Deane Yim
    • 2
  • Anreea Dragulescu
    • 2
  • Mike Seed
    • 1
    • 2
  • Lars Grosse-Wortmann
    • 1
    • 2
  • Glen van Arsdell
    • 3
  1. 1.Department of Diagnostic ImagingUniversity of TorontoTorontoCanada
  2. 2.Division of Cardiology - Department of PaediatricsUniversity of TorontoTorontoCanada
  3. 3.Division of Cardiovascular Surgery – Department of Surgery, Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
  4. 4.3D HOPE (Human organ Printing and Engineering) MedicalTorontoCanada

Personalised recommendations