Advertisement

High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples

  • Jordan S. Weaver
  • Ali Khosravani
  • Andrew Castillo
  • Surya R. KalidindiEmail author
Research

Abstract

Recent spherical nanoindentation protocols have proven robust at capturing the local elastic-plastic response of polycrystalline metal samples at length scales much smaller than the grain size. In this work, we extend these protocols to length scales that include multiple grains to recover microindentation stress-strain curves. These new protocols are first established in this paper and then demonstrated for Al-6061 by comparing the measured indentation stress-strain curves with the corresponding measurements from uniaxial tension tests. More specifically, the scaling factors between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9, which is significantly lower than the value of 2.8 used commonly in literature. The reasons for this difference are discussed. Second, the benefits of these new protocols in facilitating high throughput exploration of process-property relationships are demonstrated through a simple case study.

Keywords

Sample libraries High throughput Hertzian indentation Al alloys Aging 

Notes

Acknowledgements

The authors wish to thank Mr. Scott Henry and Mr. Larry Berardinis at ASM International for their leadership on the Structural Materials Data Demonstration project under which this study was started. We also want to thank Dr. Warren Hunt of Nexight Group and Mr. Kevin Anderson of Mercury Marine for their expert knowledge of Al-6061 and careful selection of the material and processing parameters. In addition, we wish to acknowledge Dr. Carelyn Campbell and Dr. Yaakov Idell at NIST for their helpful discussions and sharing TEM and chemical composition analysis. The tensile testing was completed in a shared user facility, the Materials Property Research Lab, at the Georgia Institute of Technology which is operated and maintained by Dr. Richard Neu, Mr. James Huggins, and Mr. Kyle Brindley.

Funding

Funding for this study was provided by NIST 70NANB14H191.

References

  1. 1.
    Field JS, Swain MV (1995) Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J Mater Res 10(1):101–112CrossRefGoogle Scholar
  2. 2.
    Field JS, Swain MV (1993) A simple predictive model for spherical indentation. J Mater Res 8(2):297–306CrossRefGoogle Scholar
  3. 3.
    Basu S, Moseson A, Barsoum MW (2006) On the determination of spherical nanoindentation stress-strain curves. J Mater Res 21(10):2628–2637CrossRefGoogle Scholar
  4. 4.
    Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater 56(14):3523–3532CrossRefGoogle Scholar
  5. 5.
    Herbert EG et al (2001) On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398:331–335CrossRefGoogle Scholar
  6. 6.
    Pathak S et al (2012) Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J Mater Sci 47:815–823CrossRefGoogle Scholar
  7. 7.
    Pathak S et al (2011) Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation. J Mech Behav Biomed Mater 4:34–43CrossRefGoogle Scholar
  8. 8.
    Pathak S et al (2009) Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. J Mater Res 24(3):1142–1155CrossRefGoogle Scholar
  9. 9.
    Pathak S et al (2009) Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon 47(8):1969–1976CrossRefGoogle Scholar
  10. 10.
    Pathak S, Stojakovic D, Kalidindi SR (2009) Measurement of the local mechanical properties in polycrystalline samples using spherical nanoindentation and orientation imaging microscopy. Acta Mater 57(10):3020–3028CrossRefGoogle Scholar
  11. 11.
    Vachhani SJ, Kalidindi SR (2015) Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater 90:27–36CrossRefGoogle Scholar
  12. 12.
    Kalidindi SR, Vachhani SJ (2014) Mechanical characterization of grain boundaries using nanoindentation. Curr Opin Solid State Mater Sci 18(4): 196–204.CrossRefGoogle Scholar
  13. 13.
    Vachhani S, Doherty R, Kalidindi S (2013) Effect of the continuous stiffness measurement on the mechanical properties extracted using spherical nanoindentation. Acta Mater 61(10):3744–3751CrossRefGoogle Scholar
  14. 14.
    Hay J, Agee P, Herbert E (2010) Continuous stiffness measurement during instrumented indentation testing. Exp Tech 34(3): 86–94.CrossRefGoogle Scholar
  15. 15.
    Li XD, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Materials Characterization. 48(1):11–36.CrossRefGoogle Scholar
  16. 16.
    ASTM E8 / E8M-15a (2015) Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken, PA. https://doi.org/www.astm.org
  17. 17.
    Gau JT, Principe C, Wang JW (2007) An experimental study on size effects on flow stress and formability of aluminum and brass for microforming. J Mater Process Technol 184(1-3):42–46CrossRefGoogle Scholar
  18. 18.
    Keller C, Hug E, Chateigner D (2009) On the origin of the stress decrease for nickel polycrystals with few grains across the thickness. Mater Sci Eng A, Struct Mater, Prop Microstruct Process 500(1-2):207–215CrossRefGoogle Scholar
  19. 19.
    Haque MA, Saif MTA (2005) In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope. J Mater Res 20(7):1769–1777CrossRefGoogle Scholar
  20. 20.
    Jun T-S et al (2016) Local deformation mechanisms of two-phase Ti alloy. Mater Sci Eng A 649:39–47CrossRefGoogle Scholar
  21. 21.
    Chansun S et al. (2015) Specimen size effects on the weakening of a bulk metastable austenitic alloy. Materials Science and Engineering: A (Structural Materials: Properties, Microstructure and Processing). 622:67–75.CrossRefGoogle Scholar
  22. 22.
    Hemker KJ, Sharpe WN (2007) Microscale characterization of mechanical properties. Annu Rev Mater Res 37:93–126CrossRefGoogle Scholar
  23. 23.
    Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73CrossRefGoogle Scholar
  24. 24.
    Tabor D (1951) The hardness of metals. Clarendon, Oxford, p 175, ixGoogle Scholar
  25. 25.
    Taljat B, Zacharia T, Haggag FM (1997) Analysis of ball-indentation load-depth data: part I. Determining elastic modulus. J Mater Res 12(4):965–974CrossRefGoogle Scholar
  26. 26.
    Alcala J, Giannakopoulos AE, Suresh S (1998) Continuous measurements of load-penetration curves with spherical microindenters and the estimation of mechanical properties. J Mater Res 13(5):1390–1400CrossRefGoogle Scholar
  27. 27.
    Haggag FM (ed) (1993) In-Situ Measurements of Mechanical-Properties Using Novel Automated Ball Indentation System. Small Specimen Test Techniques Applied to Nuclear Receptor Vessel Thermal Annealing and Plant Life Extension, ed. W.R. Corwin, F.M. Haggag, and W.L. Server. Vol. 1204. 27–44Google Scholar
  28. 28.
    Pathak S, Kalidindi SR (2015) Spherical nanoindentation stress–strain curves. Mater Sci Eng R-Rep 91:1–36CrossRefGoogle Scholar
  29. 29.
    Pathak S, Shaffer J, Kalidindi SR (2009) Determination of an effective zero-point and extraction of indentation stress-strain curves without the continuous stiffness measurement signal. Scr Mater 60(6):439–442CrossRefGoogle Scholar
  30. 30.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20CrossRefGoogle Scholar
  31. 31.
    Hertz H, Jones DE, Schott GA (1896) Miscellaneous papers by H Hertz. Macmillan and co. xxvi, London, New YorkGoogle Scholar
  32. 32.
    Patel DK, Al-Harbi HF, Kalidindi SR (2014) Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements. Acta Mater 79:108–116CrossRefGoogle Scholar
  33. 33.
    Willis JR (1966) Hertzian contact of anisotropic bodies. J Mech Phys Solids 14(3):163CrossRefGoogle Scholar
  34. 34.
    Gao YF, Pharr GM (2007) Multidimensional contact moduli of elastically anisotropic solids. Scr Mater 57(1):13–16CrossRefGoogle Scholar
  35. 35.
    Swadener JG, Pharr GM (2001) Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos Mag A 81(2):447–466CrossRefGoogle Scholar
  36. 36.
    Vlassak JJ et al (2003) The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J Mech Phys Solids 51(9):1701–1721CrossRefGoogle Scholar
  37. 37.
    Vlassak JJ, Nix WD (1994) Measuring the elastic properties of anisotropic materials by means of indentation experiments. J Mech Phys Solids 42(8):1223–1245CrossRefGoogle Scholar
  38. 38.
    Vlassak JJ, Nix WD (1993) Indentation modulus of elastically anisotropic half-spaces. Philos Mag A 67(5):1045–1056CrossRefGoogle Scholar
  39. 39.
    ASM International (2002) ASM handbook volume 11 (online). ASM International, Materials Park, OHGoogle Scholar
  40. 40.
    Ozturk F et al (2010) Influence of aging treatment on mechanical properties of 6061 aluminum alloy. Mater Des 31(2):972–975CrossRefGoogle Scholar
  41. 41.
    Buha J et al (2007) Secondary precipitation in an Al-Mg-Si-Cu alloy. Acta Mater 55(9):3015–3024CrossRefGoogle Scholar
  42. 42.
    Edwards GA et al (1998) The precipitation sequence in Al-Mg-Si alloys. Acta Mater 46(11):3893–3904CrossRefGoogle Scholar
  43. 43.
    Marioara CD et al (2006) Post-beta '' phases and their influence on microstructure and hardness in 6xxx Al-Mg-Si alloys. J Mater Sci 41(2):471–478CrossRefGoogle Scholar
  44. 44.
    Johnson KL (1985) Contact mechanics. Cambridge Cambridgeshire; New York: Cambridge University Press. xi, 452 p.Google Scholar
  45. 45.
    Hill R, Storakers B, Zdunek AB (1989) A theoretical-study of the Brinell hardness test. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 423(1865):301–330CrossRefGoogle Scholar
  46. 46.
    Tirupataiah Y, Sundararajan G (1991) On the constraint factor associated with the indentation of work-hardening materials with a spherical ball. Metallurgical Transactions a-Physical Metallurgy and Materials Science 22(10):2375–2384CrossRefGoogle Scholar
  47. 47.
    Alcala J, Esque-de los Ojos D (2010) Reassessing spherical indentation: contact regimes and mechanical property extractions. Int J Solids Struct 47(20):2714–2732CrossRefGoogle Scholar
  48. 48.
    Richmond O, Morrison HL, Devenpeck ML (1974) Sphere indentation with application to the Brinell hardness test. Int J Mech Sci 16(1):75–82CrossRefGoogle Scholar
  49. 49.
    Yu W, Blanchard JP (1996) An elastic-plastic indentation model and its solutions. J Mater Res 11(09):2358–2367CrossRefGoogle Scholar
  50. 50.
    Jackson R, Ghaednia H, Pope S (2015) A solution of rigid–perfectly plastic deep spherical indentation based on slip-line theory. Tribol Lett 58(3):1–7CrossRefGoogle Scholar
  51. 51.
    Johnson KL (1970) The correlation of indentation experiments. J Mech Phys Solids 18(2):115–126CrossRefGoogle Scholar
  52. 52.
    Fischer-Cripps AC (2000) A review of analysis methods for sub-micron indentation testing. Vacuum 58(4):569–585CrossRefGoogle Scholar
  53. 53.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRefGoogle Scholar
  54. 54.
    Donohue BR, Ambrus A, Kalidindi SR (2012) Critical evaluation of the indentation data analyses methods for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Mater 60(9):3943–3952CrossRefGoogle Scholar
  55. 55.
    Patel DK, Kalidindi SR (2016) Correlation of spherical nanoindentation stress-strain curves to simple compression stress-strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater 112:295–302CrossRefGoogle Scholar
  56. 56.
    National Science and Technology Council (U.S.) (2011) Materials Genome Initiative for global competitiveness., Executive Office of the President, National Science and Technology Council.: Washington D.C. https://doi.org/www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf.
  57. 57.
    Maier WF, Stowe K, Sieg S (2007) Combinatorial and high-throughput materials science. Angew Chem-Int Edit 46(32):6016–6067CrossRefGoogle Scholar
  58. 58.
    Potyrailo R et al (2011) Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb Sci 13(6):579–633CrossRefGoogle Scholar
  59. 59.
    Simon CG, Lin-Gibson S (2011) Combinatorial and high-throughput screening of biomaterials. Adv Mater 23(3):369–387CrossRefGoogle Scholar
  60. 60.
    Zhao JC (2014) High-throughput experimental tools for the materials genome initiative. Chin Sci Bull 59(15):1652–1661CrossRefGoogle Scholar
  61. 61.
    Green ML, Takeuchi I, Hattrick-Simpers JR (2013) Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113(23):231101-01 to 231101-53. https://doi.org/dx.doi.org/10.1063/1.4803530.CrossRefGoogle Scholar
  62. 62.
    Springer H, Raabe D (2012) Rapid alloy prototyping: compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Mater 60(12):4950–4959CrossRefGoogle Scholar
  63. 63.
    Warchomicka F et al (2010) Microstructure evolution during hot deformation of Ti-6Al-4v double cone specimens. Int J Mater Form 3:215–218CrossRefGoogle Scholar
  64. 64.
    Miracle DB et al (2014) Exploration and development of high entropy alloys for structural applications. Entropy 16(1):494–525CrossRefGoogle Scholar
  65. 65.
    Zhao JC et al (2002) A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus. Jom-Journal of the Minerals Metals & Materials Society 54(7):42–45CrossRefGoogle Scholar
  66. 66.
    Zhao JC (2001) A combinatorial approach for efficient mapping of phase diagrams and properties. J Mater Res 16(6):1565–1578CrossRefGoogle Scholar
  67. 67.
    Warren OL, Wyrobek TJ (2005) Nanomechanical property screening of combinatorial thin-film libraries by nanoindentation. Meas Sci Technol 16(1):100–110CrossRefGoogle Scholar
  68. 68.
    Shastry VV et al (2013) Combining indentation and diffusion couple techniques for combinatorial discovery of high temperature shape memory alloys. Acta Mater 61(15):5735–5742CrossRefGoogle Scholar
  69. 69.
    Han SM et al (2005) Combinatorial studies of mechanical properties of Ti-Al thin films using nanoindentation. Acta Mater 53(7):2059–2067CrossRefGoogle Scholar
  70. 70.
    Menendez E et al (2014) A combinatorial study of the mechanical and magnetic properties of a gradually nitrided austenitic stainless steel single crystal. Crystengcomm 16(17):3515–3520CrossRefGoogle Scholar
  71. 71.
    Tweedie CA, et al (2005) Combinatorial material mechanics: high-throughput polymer synthesis and nanomechanical screening. Adv. Mater. 17(21):2599-2604.CrossRefGoogle Scholar
  72. 72.
    ASTM A255-10 (2014), Standard Test Methods for Determining Hardenability of Steel. ASTM International, West Conshohocken, PA. https://doi.org/www.astm.org
  73. 73.
    ASTM E10-12 (2012) Standard Test Method for Brinell Hardness of Metallic Materials. ASTM International, West Conshohocken, PA. https://doi.org/www.astm.org

Copyright information

© The Author(s). 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Jordan S. Weaver
    • 1
    • 2
  • Ali Khosravani
    • 1
  • Andrew Castillo
    • 1
  • Surya R. Kalidindi
    • 1
    Email author
  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Center for Integrated NanotechnologiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations