Advertisement

Developing constitutive model parameters via a multi-scale approach

  • B. S. AnglinEmail author
  • B. T. Gockel
  • A. D. Rollett
Research

Abstract

Computing the mechanical response of materials requires accurate constitutive descriptions, especially their plastic behavior. Furthermore, the ability of a model to be used as a predictive, rather than a descriptive, tool motivates the development of physically based constitutive models. This work investigates combining a homogenized viscoplastic self-consistent (VPSC) approach to reduce the development time for a high-resolution viscoplastic model based on the fast Fourier transform (FFT). An optimization scheme based on a least-squares algorithm is presented. The constitutive responses of copper, interstitial-free steel, and pearlite are investigated, and the model parameters are presented. Optimized parameters from the low-fidelity model provide close agreement (<2 MPa, ~1 % error) with stress-strain data at low strains (<10 %) in the high-fidelity FFT model. Simple adjustments to constitutive law parameters bring the FFT stress-strain curve in alignment with experimental data at strains greater than 10 %. A two-phase constitutive law is developed for a pearlitic steel using a single stress-strain curve, supplemented by data for the constituent phases. Sources of error and methods of using material information are discussed that lead to optimal estimates of initial parameter values.

Keywords

Optimization Constitutive law Pearlite Viscoplastic Multi-scale 

Notes

Acknowledgements

Use of the Garnet machine at the ERDC DSRC for completion of this work is gratefully acknowledged. The support of the High Performance Computing Modernization Office via the Productivity Enhancement, Technology Transfer and Training (PETTT) program is also acknowledged.

Funding

This research was supported in part (BSA) by an appointment to the Postgraduate Research Participation Program at the U.S. Army Research Laboratory administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and USARL. ADR acknowledges support from the National Science Foundation under DMR 1435544.

References

  1. 1.
    Chaboche JL (2008) Int J Plast 24:1642–1693CrossRefGoogle Scholar
  2. 2.
    Lebensohn RA, Tome CN (1993) Acta Metall 41:2611–2624CrossRefGoogle Scholar
  3. 3.
    Lebensohn RA (2001) Acta Mater 49:2723–2737CrossRefGoogle Scholar
  4. 4.
    Rollett AD, Rohrer GS, Suter RM (2015) MRS Bull 40(11):951–960CrossRefGoogle Scholar
  5. 5.
    Abdul-Hameed H, Messager T, Zairi F and Nait-Abdelaziz M (2014). In: Rodrigues H, Herskovits J, Soares C.M, Guedes J.M, Araujo A, Folgado J, Moleiro F, and Madeira J.A (ed) Engineering Optimization 2014. Taylor & Francis Ltd., London, UKGoogle Scholar
  6. 6.
    Zhang C, Moore JD (1997) Polym Eng Sci 32(2):414–420CrossRefGoogle Scholar
  7. 7.
    Shi S, Yu D, Gao L, Chen G, Chen J, Chen X (2012) J Power Sources 213:40–46CrossRefGoogle Scholar
  8. 8.
    Ran JO, Fu MW (2014) Int J Plast 61:1–16CrossRefGoogle Scholar
  9. 9.
    Wang H, Wu PD, Gharghouri MA (2010) Mater Sci Eng, A 527:3588–3594CrossRefGoogle Scholar
  10. 10.
    Wang H, Wu PD, Tome CN, Wang J (2012) Mater Sci Eng, A 555:93–98CrossRefGoogle Scholar
  11. 11.
    Staroselsky A, Anand L (2003) Int J Plast 19:1843–1864CrossRefGoogle Scholar
  12. 12.
    Balasubramanian S, Anand L (2012) J Mech Phys Solids 50:101–126CrossRefGoogle Scholar
  13. 13.
    Smith A, Chen Z, Lee JY, Lee MG, Wagoner RH (2014) Int J Plast 58:100–119CrossRefGoogle Scholar
  14. 14.
    Zhang K, Holmedal B, Hopperstad OS, Dumoulin S, Gawed J, Van Bael A, Van Houtte P (2015) Int J Plast 66:3–30CrossRefGoogle Scholar
  15. 15.
    Gonzalez D, Simonovski J, Withers PI, Quinta Da Fonseca I (2014) Int J Plast 61:49–63CrossRefGoogle Scholar
  16. 16.
    Yang BJ, Shin H, Kim H, Lee HK (2014) Appl Phys Lett 104:1–4Google Scholar
  17. 17.
    Ma LJ, Liu XY, Fang Q, Xu HF, Xia HM, Li EB, Yang SG, Li WP (2013) Rock Mech Rock Eng 46:53–66CrossRefGoogle Scholar
  18. 18.
    Sun L, Zhu Y (2013) Construct Build Mater 40:584–595CrossRefGoogle Scholar
  19. 19.
    Barnett RA, O’Donoghue PE, Leen SB (2013) Int J Fatigue 48:192–204CrossRefGoogle Scholar
  20. 20.
    Follansbee PS, Kocks UF (1988) Acta Metall 36:81–93CrossRefGoogle Scholar
  21. 21.
    Lebensohn RA, Tome CN (1997) Acta Metall 45:3687–3694Google Scholar
  22. 22.
    Lebensohn RA, Tome CN (1994) Mater Sci Eng, A 175:71–82CrossRefGoogle Scholar
  23. 23.
    Hu L, Banovic S, Foecke T, Iadicola M and Rollett AD (2009) Proc. IDDRG 2009 International Conference, The International Deep Drawing Research Group, pp. 285-294; https://doi.org/www.iddrg.com, accessed June 2016.
  24. 24.
    Lebensohn RA, Casteñeda PP, Brenner R and Castelnau O (2011) Computational Methods for Microstructure-Property Relationships. Ghosh, Somnath, Dimiduk, Dennis, Springer USGoogle Scholar
  25. 25.
    Eshelby JD (1957) Proc R Soc Lond A Math Phys Sci 241:376–396Google Scholar
  26. 26.
    Eshelby JD (1959) Proc R Soc Lond A Math Phys Sci 252:561–569Google Scholar
  27. 27.
    Tome CN and Lebensohn RA (2012) Manual for Code Visco-Plastic Self-Consistent (VPSC). https://doi.org/public.lanl.gov/lebenso/VPSC7c_manual.pdf
  28. 28.
    Voce E (1955) Metallurgia: Brit J Metals 51(307):219–226Google Scholar
  29. 29.
    Taylor GI (1938) J Inst Met 62:307–324Google Scholar
  30. 30.
    Rollett AD, Smith PR, James MR (1998) Mat Sci Eng A - Structural Materials Properties Microstructure and Processing 257:77–86CrossRefGoogle Scholar
  31. 31.
    Frigo M, Johnson SG (2005) Proc IEEE 93:216–231CrossRefGoogle Scholar
  32. 32.
    Anglin BS, Rollett AD, Lebensohn RA (2014) Comput Mater Sci 87:209–217CrossRefGoogle Scholar
  33. 33.
    Li SF, Lind J, Hefferan CM, Pokharel R, Lienert U, Rollett AD, Suter RM (2012) J App Crys 45:1098–1108CrossRefGoogle Scholar
  34. 34.
    Pokharel R, Lind J, Li SF, Kenesei P, Lebensohn RA, Suter RM, Rollett AD (2015) Int J Plast 67:217–234CrossRefGoogle Scholar
  35. 35.
    Groeber MA, Jackson MA (2014) Integrating Materials and Manufacturing Innovation 3(5):1–17Google Scholar
  36. 36.
    Morooka S, Tomota Y, Kamiyama T (2008) ISIJ Intl 48:525–530CrossRefGoogle Scholar
  37. 37.
    Inoue A, Ogura T, Masumoto T (1973) J Jpn Inst Metals 37(8):875–882CrossRefGoogle Scholar
  38. 38.
    Ohashi T, Roslan L, Takahashi K, Shimokawa T, Tanaka M, Higashida K (2013) Mater Sci Eng, A 588:214–220.Google Scholar
  39. 39.
    Bagaryatsky YA, Dokl, Akad and Nauk (1950) SSSR vol. 73: pp. 1161–1164.Google Scholar
  40. 40.
    Sevillano JG, van Houtte P, Aernoudt E (1981) Prog Mater Sci 25:69–412CrossRefGoogle Scholar
  41. 41.
    Sevillano JG (1974) PhD Thesis. Katholieke Universiteit, Leuven, Belgium, 1974Google Scholar
  42. 42.
    Jin HJ, Kurmanaeva L, Schmauch J, Rösner H, Ivanisenko Y, Weissmüller J (2009) Acta Mater 57(9):2665–2672CrossRefGoogle Scholar
  43. 43.
    Hayashi Y, Hirose Y, Setoyama D (2014) Mater Sci Forum 777:118–123CrossRefGoogle Scholar
  44. 44.
    Pokharel R, Lind J, Kanjarla AK, Lebensohn RA, Li SF, Kenesei P, Suter RM, Rollett AD (2014) Rev Condens Matter Phys 5 5:317–346CrossRefGoogle Scholar
  45. 45.
    Lebensohn RA, Canova GR (1997) Acta Mater 45(9):3687–3694CrossRefGoogle Scholar
  46. 46.
    Embury JD, Fisher RM (1966) Acta Metall 14:147–159CrossRefGoogle Scholar
  47. 47.
    Langford G (1970) Metall Trans A 1:465–477CrossRefGoogle Scholar
  48. 48.
    Langford G (1977) Metall Trans A 8A:861–875CrossRefGoogle Scholar
  49. 49.
    Inoue A, Ogura T, Masumoto T (1977) Metall Trans A 8A:1689–1695CrossRefGoogle Scholar
  50. 50.
    Sevillano JG (1975) Mater Sci Eng 21:221–225CrossRefGoogle Scholar
  51. 51.
    Mauer K, Warrington DH (1967) Philos Mag 15(134):321–327CrossRefGoogle Scholar
  52. 52.
    Inoue A, Ogura T, Masumoto T (1976) Trans JIM 17:663–672CrossRefGoogle Scholar
  53. 53.
    Castelnau O, Blackman DK, Lebensohn RA and Castañeda PP (2008) J Geophys Res: Sol Earth vol. 113.Google Scholar
  54. 54.
    Tomota Y, Lukáš P, Neov D, Harjo S, Abe YR (2003) Acta Mater 31:805–817CrossRefGoogle Scholar
  55. 55.
    Elwazri AM, Wanjara P, Yue S (2005) Mater Sci Eng, A 404:91–98CrossRefGoogle Scholar
  56. 56.
    Marder AR, Bramfitt BL (1976) Met Trans A 7A:365–372CrossRefGoogle Scholar
  57. 57.
    Pokharel R (2013) PhD. Thesis. Carnegie Mellon University, Pittsburgh, PA, USAGoogle Scholar

Copyright information

© The Author(s). 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Materials Response and Design BranchUS Army Research LaboratoryAberdeen Proving GroundUSA
  2. 2.U.S. Air Force Research LaboratoryWright-PattersonUSA
  3. 3.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations