The MEAM parameter calibration tool: an explicit methodology for hierarchical bridging between ab initio and atomistic scales

  • Christopher D. BarrettEmail author
  • Ricolindo L. Carino


We developed a software package that incorporates integrated computational materials engineering principles to enable rapid development of new state-of-the-art atomistic potentials for metal behavior driven by ab initio and experimental data. The software features hand-tuning abilities as well as automated calibration of parameters to flexible target properties. Molecular statics simulations of target properties are done using a built-in LAMMPS library module to boost performance. The potential calibration method is flexible and intuitive allowing users to quickly develop potentials for complex alloys capturing a wide variety of behaviors. We demonstrate the validity of the software and technique by calibrating a new robust Mg potential.


ICME Molecular dynamics Density functional theory 



The authors thank Haitham El Kadiri, Mark Horstemeyer, Roger King, and Robert Moser for their support of this project. The authors also thank Mike Baskes and Ted Dickel for valuable insight on software functionality and testing. Effort sponsored by the Engineering Research & Development Center under Cooperative Agreement number W912HZ-15-2-0004. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Engineering Research & Development Center or the US Government.


  1. 1.
    Schmitz GJ, Prahl U (2012) Integrative Computational Materials Engineering: Concepts and Applications of a Modular Simulation Platform. Wiley.Google Scholar
  2. 2.
    Allison J, Backman D, Christodoulou L (2006) Integrated computational materials engineering: a new paradigm for the global materials profession. JOM 58(11): 25–27. doi: Scholar
  3. 3.
    Horstemeyer MF (2012) Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design with Science. Wiley.Google Scholar
  4. 4.
    Olson GB (1997) Computational design of hierarchically structured materials. Science 277(5330): 1237–1242.CrossRefGoogle Scholar
  5. 5.
    Panchal JH, Kalidindi SR, McDowell DL (2013) Key computational modeling issues in integrated computational materials engineering. Comput Aided Des 45(1): 4–25.CrossRefGoogle Scholar
  6. 6.
    Joost WJ (2012) Reducing vehicle weight and improving us energy efficiency using integrated computational materials engineering. JOM 64(9): 1032–1038.CrossRefGoogle Scholar
  7. 7.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B): 864.CrossRefGoogle Scholar
  8. 8.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A): 1133.CrossRefGoogle Scholar
  9. 9.
    Parr RG, Yang W (1989) Density-functional Theory of Atoms and Molecules, Vol. 16. Oxford University Press.Google Scholar
  10. 10.
    Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256(4): 454–464.CrossRefGoogle Scholar
  11. 11.
    Dreizler RM, Gross EK (2012) Density Functional Theory: an Approach to the Quantum Many-body Problem. Springer.Google Scholar
  12. 12.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24): 17953.CrossRefGoogle Scholar
  13. 13.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3): 1758.CrossRefGoogle Scholar
  14. 14.
    Baskes MI (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46: 2727–2742. doi: Scholar
  15. 15.
    Daw MS, Baskes MI (1983) Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50: 1285–1288. doi: Scholar
  16. 16.
    Daw MS, Baskes MI (1984) Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29: 6443–6453. doi: Scholar
  17. 17.
    Jelinek B, Groh S, Horstemeyer MF, Houze J, Kim SG, Wagner GJ, Moitra A, Baskes MI (2012) Modified embedded atom method potential for al, si, mg, cu, and fe alloys. Phys Rev B 85(24): 245102.CrossRefGoogle Scholar
  18. 18.
    Baskes MI, Johnson RA (1994) Modified embedded atom potentials for hcp metals. Model Simul Mater Sci Eng 2(1): 147.CrossRefGoogle Scholar
  19. 19.
    Nouranian S, Tschopp MA, Gwaltney SR, Baskes MI, Horstemeyer MF (2014) An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method. Phys Chem Chem Phys 16(13): 6233–6249.CrossRefGoogle Scholar
  20. 20.
    Tschopp MA, Solanki K, Baskes MI, Gao F, Sun X, Horstemeyer M (2012) Generalized framework for interatomic potential design: Application to fe–he system. J Nucl Mater 425(1): 22–32.CrossRefGoogle Scholar
  21. 21.
    Chernatynskiy A, Phillpot SR, LeSar R (2013) Uncertainty quantification in multiscale simulation of materials: A prospective. Annu Rev Mater Res 43: 157–182.CrossRefGoogle Scholar
  22. 22.
    Wright E, Rossky P, Oden JT (2013) A Bayesian framework for calibration and uncertainty quantification of coarse-grained atomistic models. ICES Report: 13–31.Google Scholar
  23. 23.
    Salloum M, Templeton JA (2014) Inference and uncertainty propagation of atomistically-informed continuum constitutive laws, part 1: Bayesian inference of fixed model forms. Int J Uncertain Quantif 4(2): 151–170.CrossRefGoogle Scholar
  24. 24.
    Salloum M, Templeton JA (2014) Inference and uncertainty propagation of atomistically informed continuum constitutive laws, part 2: Generalized continuum models based on gaussian processes. Int J Uncertain Quantif 4(2): 171–184.CrossRefGoogle Scholar
  25. 25.
    Jacobson LC, Kirby RM, Molinero V (2014) How short is too short for the interactions of a water potential? exploring the parameter space of a coarse-grained water model using uncertainty quantification. J Phys Chem B 118(28): 8190–8202.CrossRefGoogle Scholar
  26. 26.
    Horstemeyer MF, Hughes JM, Sukhija N, Lawrimore III WB, Kim S, Carino R, Baskes MI (2015) Hierarchical bridging between ab initio and atomistic level computations: Calibrating the modified embedded atom method (meam) potential (part a). JOM 67(1): 143–147. doi: Scholar
  27. 27.
    Hughes JM, Horstemeyer MF, Carino R, Sukhija N, Lawrimore III WB, Kim S, Baskes MI (2015) Hierarchical bridging between ab initio and atomistic level computations: Sensitivity and uncertainty analysis for the modified embedded-atom method (meam) potential (part b). JOM 67(1): 148–153. doi: Scholar
  28. 28.
    Murnaghan FD (1944) The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences 30(9): 244–247. National Acad Sciences.CrossRefGoogle Scholar
  29. 29.
    Mehl MJ, Klein BM, Papaconstantopoulos DA (1994) First Principles Calculations of Elastic Properties of Metals, Vol. 1. Wiley, London.Google Scholar
  30. 30.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1): 1–19.CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Wu Z, Francis M, Curtin W (2015) Magnesium interatomic potential for simulating plasticity and fracture phenomena. Model Simul Mater Sci Eng 23(1): 015004.CrossRefGoogle Scholar
  33. 33.
    Yasi J, Nogaret T, Trinkle D, Qi Y, Hector L, Curtin W (2009) Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions. Model Simul Mater Sci Eng 17: 055012.CrossRefGoogle Scholar
  34. 34.
    Smith A (2007) Surface, interface and stacking fault energies of magnesium from first principles calculations. Surf Sci 601(24): 5762–5765.CrossRefGoogle Scholar
  35. 35.
    Nogaret T, Curtin W, Yasi J, Hector L, Trinkle D (2010) Atomistic study of edge and screw< c+ a> dislocations in magnesium. Acta Mater 58(13): 4332–4343.CrossRefGoogle Scholar
  36. 36.
    Tang JJ, Yang XB, OuYang L, Zhu M, Zhao YJ (2014) A systematic first-principles study of surface energies, surface relaxation and friedel oscillation of magnesium surfaces. J Phys D Appl Phys 47(11): 115305.CrossRefGoogle Scholar
  37. 37.
    Han J, Su X, Jin ZH, Zhu YT (2011) Basal-plane stacking-fault energies of Mg: a first-principles study of li-and al-alloying effects. Scr Mater 64(8): 693–696.CrossRefGoogle Scholar
  38. 38.
    Wang Y, Chen LQ, Liu ZK, Mathaudhu S (2010) First-principles calculations of twin-boundary and stacking-fault energies in magnesium. Scr Mater 62(9): 646–649.CrossRefGoogle Scholar
  39. 39.
    Avedesian MM, Baker H, et al (1999) ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM international.Google Scholar
  40. 40.
    Liu XY, Adams JB, Ercolessi F, Moriarty JA (1996) EAM potential for magnesium from quantum mechanical forces. Model Simul Mater Sci Eng 4: 293.CrossRefGoogle Scholar
  41. 41.
    Sun D, Mendelev M, Becker C, Kudin K, Haxhimali T, Asta M, Hoyt J, Karma A, Srolovitz D (2006) Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of mg. Phys Rev B 73(2): 024116.CrossRefGoogle Scholar

Copyright information

© Barrett and Carino. 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Christopher D. Barrett
    • 1
    • 2
    Email author
  • Ricolindo L. Carino
    • 1
  1. 1.Center for Advanced Vehicular SystemsMississippi State UniversityMSUSA
  2. 2.Department of Mechanical EngineeringMississippi State UniversityMSUSA

Personalised recommendations