Using quality mapping to predict spatial variation in local properties and component performance in Mg alloy thin-walled high-pressure die castings: an ICME approach and case study

  • Joy H ForsmarkEmail author
  • Jacob W Zindel
  • Larry Godlewski
  • Jiang Zheng
  • John E Allison
  • Mei Li
Research article


This paper explores the use of quality mapping for the prediction of the spatial variation in local properties in thin-walled high-pressure die castings (HPDC) of the magnesium alloy AM60. The work investigates the role of casting parameters on local ductility and yield strength and presents a model for predicting local ductility and yield strength in a cast component. A design of experiment (DOE) was created to examine the role of various casting parameters on local properties such as ductility and yield strength. Over 1,200 tensile samples were excised from cast parts and tested. Casting simulations were also conducted for each experimental condition. Local properties were predicted, and the local property (quality map) model was compared with a prototype production component. The results of this model were used as input to a performance simulation software code to simulate the component-level behavior under two different loading conditions. In this study, the authors bypassed the traditional Integrated Computational Materials Engineering (ICME; process-microstructure-properties) approach in favor of a semi-empirical quality mapping approach to provide estimates of manufacturing sensitive local properties for use in process and component design.


ICME Magnesium alloys High-pressure die casting Casting simulation 



JF would like to acknowledge Sheila Ryzyi of Ford Motor Company for assistance with tensile testing, Ari Caliskan of Ford Motor Company for assistance with the design of the component tests, and the Ford Safety Lab for the high-speed testing. JWZ and LG would like to acknowledge the support of Mag-Tec Casting in Jackson, MI for assistance with the casting trials. We acknowledge helpful discussions with and support of X. Sun, Pacific Northwest National Laboratory (Batelle Memorial Institute). We would also like to acknowledge Meridian Lightweight Technologies, Inc., for assistance with the prototype casting simulation and mechanical testing. JZ and JA wish to acknowledge the financial support of Battelle Memorial Institute and US Department of Energy under Contract No. DE-AC05-76RL01830. Their work was funded by the Department of Energy Vehicle Technologies Office under the Automotive Lightweighting Materials Program managed by William Joost.

Supplementary material

40192_2015_33_MOESM1_ESM.mp4 (384 kb)
Additional file 1: A schematic diagram of a typical cold-chamber high-pressure die cast machine.
40192_2015_33_MOESM2_ESM.mp4 (503 kb)
Additional file 2: Flow comparison of conditions I and U from the front side.
40192_2015_33_MOESM3_ESM.pptx (174 kb)
Additional file 3: Flow comparison of conditions I and U from the rear side. (4.6 mb)
Additional file 4: Animation of condition I pole test. (4.4 mb)
Additional file 5: Animation of condition U pole test. (4.4 mb)
Additional file 6: Animation of condition U axial crush test.


  1. 1.
    Friedrich HE, Mordike BL (2006) Magnesium Technology: Metallurgy, Design Data, Application. Springer, BerlinGoogle Scholar
  2. 2.
    Schumann S (2005) Paths and strategies for increased magnesium applications in vehicles. Mater Sci Forum 488–489:1–8CrossRefGoogle Scholar
  3. 3.
    Schumann S, Friedrich H (2003) Current and future use of magnesium in the automobile industry. Mater Sci Forum 419–422:51–56CrossRefGoogle Scholar
  4. 4.
    Grebetz JC (1993) A Comparison of the Impact Characteristics of Several Magnesium Die Casting Alloys. SAE Tech. Pap, Ser, 930417Google Scholar
  5. 5.
    Padfield CJ, Padfield TV (2002) Plane stress fracture toughness testing of die cast magnesium alloys. SAE Tech. Pap., Ser. 2002-01-0077Google Scholar
  6. 6.
    Chen X, Wagner DA, Houston DQ, Cooper RP (2004) Elongation variability of AM60 die cast specimens. 2004 ASME International Mechanical Engineering Congress.Google Scholar
  7. 7.
    Coultes BJ, Wood JT, Wang G, Berkmortel R (2003) Mechanical properties and microstructure of magnesium high pressure die castings. In: Kaplan HI (ed) Magnes. Technol. 2003. The Minerals, Metals, and Materials Society, pp 45–50.Google Scholar
  8. 8.
    Weiler JP, Wood JT, Klassen RJ, Maire E, Berkmortel R, Wang G (2005) Relationship between internal porosity and fracture strength of die-cast magnesium AM60B alloy. Mater Sci Eng A A395:315–322CrossRefGoogle Scholar
  9. 9.
    Wood JT, Klassen RJ, Gharghouri MA, Maire E, Wang G, Berkmortel R (2005) Mechanical properties of AM60B die castings: a review of the AUTO21 program on magnesium die-casting. SAE Tech. Pap., Ser. SAE-2005-0725Google Scholar
  10. 10.
    Carlson BE (1995) The effect of strain rate and temperature on the deformation of die cast AM60B. SAE Tech. Pap., Ser. SAE-950425Google Scholar
  11. 11.
    Li M, Zindel J, Godlewski L, Allison J (2006) Prediction of porosity defects and mechanical properties of high pressure die cast A380 aluminum alloy components. TMS Lett 3:31–32Google Scholar
  12. 12.
    Horstemeyer MF, Wang P (2003) Cradle-to-grave simulation-based design incorporating multiscale microstructure-property modeling: reinvigorating design with. J Comput Mater Des 10:13–34CrossRefGoogle Scholar
  13. 13.
    Weiler JP, Wood JT, Basu I (2012) Process-structure–property relationships for magnesium alloys. Mater Sci Forum 706–709:1273–1278, doi:10.4028/ 706–709.1273Google Scholar
  14. 14.
    Weiler JP, Wood JT, Klassen RJ, Berkmortel R, Wang G (2006) Variability of skin thickness in an AM60B magnesium alloy die-casting. Mater Sci Eng A 419:297–305, doi:10.1016/j.msea.2006.01.034CrossRefGoogle Scholar
  15. 15.
    Laukli HI, Lohne O, Arnberg L (2005) High Pressure Die Casting of Aluminum and Magnesium Alloys - some comparisons of Microstructure Formation. Shape Cast. John Campbell Symp, TMS Annual MeetingGoogle Scholar
  16. 16.
    Dahle AK, Lee YC, Nave MD, Scha PL, StJohn DH (2001) Development of the as-cast microstructure in magnesium-aluminum alloys. J Light Met 1:61–72CrossRefGoogle Scholar
  17. 17.
    Rodrigo D, Murray M, Mao H Brevick J, Mobley C, Chandrasekar V, Esdaile R (1999) Effects of section size and microstructural features on the mechanical properties of die cast AZ91D and AM60B magnesium alloy test bars. SAE Tech. Pap., Ser. 1999-01-0927Google Scholar
  18. 18.
    Rodrigo D, Murray M, Mao H, Brevick J, Mobley C, Esdaile R (1999) Characteristic microstructural features of die cast magnesium alloys. World Die Cast. 20th Int. Die Cast. Congr. Expo. NADCA, pp 219–225.Google Scholar
  19. 19.
    Rodrigo D, Ahuja V (2000) Effect of casting parameters on the formation “pore/segregation” bands in magnesium die castings. In: Aghion E, Eliezer D (eds) Magnes. 2000 Proc. 2nd Isr. Conf. Magnes. Sci. Technol. Magnesium Research Institute Ltd, Dead Sea, Israel, pp 97–104Google Scholar
  20. 20.
    Mao H, Brevick J, Mobley C Chandrasekar V, Rodrigo D, Murray M (1999) Microstructural characteristics of die cast AZ91D and AM60 magnesium alloys. SAE Tech. Pap., Ser. 1999-01-0928Google Scholar
  21. 21.
    Chadha G, Allison JE, Jones JW (2007) The role of microstructure on ductility of die-cast AM50 and AM60 magnesium alloys. Metall Mater Trans A 38A:286–296CrossRefGoogle Scholar
  22. 22.
    Dahle AK, StJohn DH (1999) Rheological behavior of the mushy zone and its effect on the formation of casting defects during solidification. Acta Mater 47:31–41CrossRefGoogle Scholar
  23. 23.
    Dahle AK, StJohn DH (1999) The origin of banded defects in high pressure die cast magnesium alloys. World Die Cast T99–062:205–211Google Scholar
  24. 24.
    Bowles AL, Griffiths JR, Davidson CJ (2001) Ductility and the skin effect in high pressure die cast Mg-Al alloys. In: Hryn J (ed) Magnes. Technol. 2001. The Metals Mineral and Materials Society, pp 161–168Google Scholar
  25. 25.
    Dahle AK, Sannes S, St. John DH, Westengen H (2001) Formation of defect bands in high pressure die cast magnesium alloys. Journal of Light Metals 1:99–103CrossRefGoogle Scholar
  26. 26.
    Sannes S, Gjestland H, Westengen H, Laukli HI, Lohne O (2003) Die casting of magnesium alloys - the importance of controlling die filling and solidification. SAE Tech Pap., Ser SAE–2003–01–0183Google Scholar
  27. 27.
    Wang G, Froese B, Bakke P (2003) Process and property relationships in AM60B die castings. Magensium Technol. 2003 The Metals Mineral and Materials Society.Google Scholar
  28. 28.
    Cao H, Wessen M (2004) Effect of microstructure on mechanical properties of As-Cast Mg-Al alloys. Metall Mater Trans A 35A:309–319CrossRefGoogle Scholar
  29. 29.
    Cao H, Wessen M (2005) Characteristics of microstructure and banded defects in die cast AM50 magnesium components. Int J Cast Met Res 18:377–384CrossRefGoogle Scholar
  30. 30.
    Cao H, Wessen M (2003) Modeling of microstructure - mechanical property relations in cast Mg-Al alloys. In: D. M. Stefanescu, Warren J, Jolly M, Krane M (eds) Model. Cast. Welding, Adv. Solidif. Process. X. The Minerals, Metals, and Materials Society, pp 165–172.Google Scholar
  31. 31.
    Forsmark JH, Boileau J, Houston D, Cooper R (2012) A microstructural and mechanical property study of an AM50 HPDC magnesium alloy. Int J Met 6:15–26Google Scholar
  32. 32.
    Lee CD, Shin K (2007) Effect of microporosity on the tensile properties of AZ91 magnesium alloy. Acta Mater 55:4293–4303, doi:10.1016/j.actamat.2007.03.026CrossRefGoogle Scholar
  33. 33.
    Lee CD (2007) Tensile properties of high-pressure die-cast AM60 and AZ91 magnesium alloys on microporosity variation. J Mater Sci 42:10032–10039, doi:10.1007/s10853-007-2003-1CrossRefGoogle Scholar
  34. 34.
    Choi KS, Li D, Sun X, Li M, Allison J (2013) Effects of pore distributions on ductility of thin-walled high pressure die-cast magnesium. SAE Tech Pap, Ser. doi:10.4271/2013-01-0644CrossRefGoogle Scholar
  35. 35.
    Unigovski Ya, Tuman E, Eliezer A, Riber L, Koren Z (2000) Correlation of mechanical properties of die cast magnesium alloys with processing conditions. In: Aghion E, Eliezer D (eds) Magnes. 2000 Proc. 2nd Isr. Int. Conf. Magnes. Sci. Technol. Magnesium Research Institute, Dead Sea, Israel, pp 105–111Google Scholar
  36. 36.
    Gjestland H, Sannes S, Svalestuen J, Westengen H (2005) Optimizing the magnesium die casting process to achieve reliability in automotive applications. SAE Tech. Pap., Ser. SAE 2005–0333Google Scholar
  37. 37.
    Gertsberg G, Nagar N, Lautzhe M Bronfin B, Moscovitch N, Schumann S (2005) Effect of HPDC parameters on the performance of creep resistant alloys MRI153M and MRI230D. SAE Tech. Publ., SAE 2005–0Google Scholar
  38. 38.
    Greve L (2004) Development of a PAM-CRASH material model for die casting alloys. Magnes. Proc. 6th Int. ConfGoogle Scholar
  39. 39.
    Sannes S, Gjestland H, Westengen H, (2005) The use of quality mapping to predict performance of thin-walled magnesium die casting. SAE Tech Pap. Ser. 2005-01-0332.Google Scholar
  40. 40.
    Dorum C, Hopperstad OS, Langseth M, Lademo OG (2005) Numerical modeling of the structural behavior of thin-walled cast magnesium components using a through-process approach. SAE Tech. Pap., Ser. 2005-01-07Google Scholar
  41. 41.
    Dorum C, Hopperstad OS, Landemo O-G, Langseth M (2005) Numerical modelling of the structural behavior of thin-walled cast magnesium components. Int J Solids Struct 42:2129–2144CrossRefGoogle Scholar
  42. 42.
    Dorum C, Hopperstad OS, Lademo O-G, Langseth M (2006) An experimental study on the energy absorption capacity of thin-walled castings. Int J Impact Eng 32:702–724CrossRefGoogle Scholar
  43. 43.
    Dorum C, Hopperstad OS, Lademo O-G, Langseth M (2007) Energy absorption capacity for thin-walled AM60 castings using the shear-bolt principle. Comput Struct 85:89–101CrossRefGoogle Scholar
  44. 44.
    Dorum C, Hopperstad OS, Berstad T, Dispinar D (2009) Numerical modelling of magnesium die-castings using stochastic fracture parameters. Eng Fract Mech 76:2232–2248CrossRefGoogle Scholar
  45. 45.
    Weiss U, Bach A (2011) Magnesium HPDC Crash CAE. La Met Ital 103(11–12):1–9Google Scholar
  46. 46.
    Li N, Osborne R, Cox B, Penrod D (2005) Magnesium Engine Cradle - The USCAR Structural Cast Magnesium Development Project. SAE Trans., 2005-01-03Google Scholar
  47. 47.
    Balzer JS, Dellock PK, Maj MH, Cole GS, Reed D, Davis T, Lawson T, Simonds G (2003) Structural magnesium front end support. SAE Tech. Pap., Ser. 2003-01-0186Google Scholar
  48. 48.
    Blanchard PJ, Bretz GT, Subramanian S, deVries JE, Syvret A, MacDonald A, Jolley P (2005) The application of magnesium die casting to vehicle closures. SAE Tech. Pap., Ser. 2005-01-0338Google Scholar
  49. 49.
    Gibbs S (2010) Magnesium structural part parts with myth. Met Cast Des Purch 12:29–33Google Scholar
  50. 50.
    Herman EA (1996) Gating and Die Casting Dies, E-514th ed. NADCA Publications, Rosemont, IL, USAGoogle Scholar
  51. 51.
    North American Die Casting Association (1998) Magnesium Die Castings Handbook, #201 ed. NADCA Publications, Rosemont, IL, USAGoogle Scholar
  52. 52.
    Box GEP, Hunter WG, Hunter JS (1978) Statistics for Experimenters. John Wiley & Sons, New YorkGoogle Scholar
  53. 53.
    ASTM E8/E8M - 13a (2015) Standard test methods for tension testing of metallic materials 1., pp 1–28, doi: 10.1520/E0008Google Scholar
  54. 54.
  55. 55.
    Minitab 15 statistical software statguide (2012), Minitab Inc., State College, PA USAGoogle Scholar
  56. 56.
    MAGMASOFT version 4.4 user manual, MAGMA Foundry Technologies Inc., Aachen, Germany.Google Scholar
  57. 57.
    Panchal JH, Kalidindi SR, McDowell DL (2013) Key computational modeling issues in Integrated Computational Materials Engineering. Comput Des 45:4–25, doi:10.1016/j.cad.2012.06.006Google Scholar
  58. 58.
    Alain R, Lawson T, Katool P, Wang G, Jekl J, Berkmortel R, Miller L, Svalestuen J, Westengen H (2004) Robustness of large thin wall magnesium die castings for crash applications. Reprinted from: Magnesium for automotive components. SAE Tech Pap., Ser 2004–01–0131Google Scholar
  59. 59.
    Yang KV, Cáceres CH, Easton MA (2013) A microplasticity-based definition of the skin in HPDC Mg–Al alloys. Mater Sci Eng A 580:355–361, doi:10.1016/j.msea.2013.05.018CrossRefGoogle Scholar
  60. 60.
    Yang KV, Easton MA, Cáceres CH (2013) The development of the skin in HPDC Mg–Al alloys. Mater Sci Eng A 580:191–195, doi:10.1016/j.msea.2013.05.017CrossRefGoogle Scholar
  61. 61.
    Yang KV, Cáceres CH, Easton MA (2014) Strengthening micromechanisms in cold-chamber high-pressure die-cast Mg-Al alloys. Metall Mater Trans A 45:4117–4128, doi:10.1007/s11661-014-2326-xCrossRefGoogle Scholar

Copyright information

© Forsmark et al.; licensee Springer. 2015

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Joy H Forsmark
    • 1
    Email author
  • Jacob W Zindel
    • 1
  • Larry Godlewski
    • 1
  • Jiang Zheng
    • 2
  • John E Allison
    • 2
  • Mei Li
    • 1
  1. 1.Materials Research DepartmentFord Motor Company, Research and Innovation CenterDearbornUSA
  2. 2.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations