Advertisement

Analysis of the surface-roughening phenomenon in P-added bake-hardened steel sheets

  • Nam Hoon GooEmail author
  • Chungu Kang
Case study
  • 2.4k Downloads

Abstract

The surface-roughening problem with phosphorous-added bake-hardened steel sheets was investigated. Surface undulation in the sheets occurs after 2% to 3% deformation during press forming action and disappears with further deformation over 10%. The roughened sheets exhibit heterogeneity of the elemental P (phosphorous) distribution, and the segregation of P increases the hardiness of ferrite grains locally. This local strengthening of ferrite grains causes a concentration of strains in the other ferrite regions that do not contain the elemental P-segregation. The strain concentration is because of the surface undulation in the sheets under small amount of straining. The evolution of the deformation texture and the corresponding Lankford values are shown using a series of viscoplastic self-consistent (VSPC) simulations, which indicated that a strong {554}[225] texture develops, and subsequently, the Lankford value increases in the non-segregated ferrite region. The higher Lankford value makes it more difficult to deform the sheet in the through-thickness direction. The different texture developments of the segregated and segregation-free regions are the main causes of the disappearance of the surface undulation with a high amount of plastic straining greater than 10%. Finally, we conclude that the segregation of P inherited from hot band affects the plastic deformation and developed textures of the thin steel sheets.

Keywords

Ghost line defect Plastic anisotropy Surface roughening Deformation texture 

Notes

Supplementary material

40192_2014_23_MOESM1_ESM.gif (34 kb)
Authors’ original file for figure 1
40192_2014_23_MOESM2_ESM.gif (23 kb)
Authors’ original file for figure 2
40192_2014_23_MOESM3_ESM.gif (37 kb)
Authors’ original file for figure 3
40192_2014_23_MOESM4_ESM.gif (82 kb)
Authors’ original file for figure 4
40192_2014_23_MOESM5_ESM.gif (155 kb)
Authors’ original file for figure 5
40192_2014_23_MOESM6_ESM.gif (105 kb)
Authors’ original file for figure 6
40192_2014_23_MOESM7_ESM.gif (48 kb)
Authors’ original file for figure 7
40192_2014_23_MOESM8_ESM.gif (114 kb)
Authors’ original file for figure 8
40192_2014_23_MOESM9_ESM.gif (24 kb)
Authors’ original file for figure 9
40192_2014_23_MOESM10_ESM.gif (26 kb)
Authors’ original file for figure 10
40192_2014_23_MOESM11_ESM.gif (12 kb)
Authors’ original file for figure 11
40192_2014_23_MOESM12_ESM.pdf (12 kb)
Authors’ original file for figure 12

References

  1. 1.
    Rocabois P, Lehmann J, Gatellier C, Teres J: Non-metallic inclusion entrapment by slags: laboratory investigation. Ironmaking steelmaking 2003, 30(2):95–100. 10.1179/030192303225001775CrossRefGoogle Scholar
  2. 2.
    Makimattila S, Ristolainen E, Sulonen M, Lindroos V: The effect of the intermetallic layer on the adherence of a hot-dip galvanized coating. Scripta Metall 1985, 19(2):211–214. 10.1016/0036-9748(85)90184-XCrossRefGoogle Scholar
  3. 3.
    Nakamori T, Adachi Y, Arai M, Shibuya A: Coating adhesion and interface structure of galvannealed steel. ISIJ Int 1995, 35(12):1494–1501. 10.2355/isijinternational.35.1494CrossRefGoogle Scholar
  4. 4.
    Nakamori T, Adachi Y, Toki T, Shibuya A: Effect of microstructure of base steel on fe-zn alloy growth during galvanizing of an interstitial free steel. ISIJ Int 1996, 36(2):179–186. 10.2355/isijinternational.36.179CrossRefGoogle Scholar
  5. 5.
    Hong M-H, Saka H: Fib and tem observations of defects in hot-dip zinc coatings. J Electron Microsc 2004, 53(5):545–552. 10.1093/jmicro/dfh053CrossRefGoogle Scholar
  6. 6.
    Snoussi A, Bradai C, Halouani F: Effect of the withdrawal speed on the thickness of the zinc layer in hot dip pure zinc coatings. Mater Lett 2008, 62(14):2150–2152. 10.1016/j.matlet.2007.11.036CrossRefGoogle Scholar
  7. 7.
    Hong M, Paik D: Effect of substrate surface polishing on galvannealing characteristics of a mild if and an hsif steel. Ironmaking Steelmaking 2009, 36(3):234–240. 10.1179/174328107X168147CrossRefGoogle Scholar
  8. 8.
    Azimi A, Ashrafizadeh F, Toroghinejad M, Shahriari F: Metallurgical analysis of pimples and their influence on the properties of hot dip galvanized steel sheet. Engineering Failure Analysis 2012, 26: 81–88. 10.1016/j.engfailanal.2012.05.026CrossRefGoogle Scholar
  9. 9.
    Osakada K, Oyane M: On the roughening of free surface in deformation processes. Bull JSME 1971, 14(68):171–177. 10.1299/jsme1958.14.171CrossRefGoogle Scholar
  10. 10.
    Raabe D, Sachtleber M, Weiland H, Scheele G, Zhao Z: Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Materialia 2003, 51(6):1539–1560. 10.1016/S1359-6454(02)00557-8CrossRefGoogle Scholar
  11. 11.
    Wichern C, De Cooman B, Van Tyne C: Surface roughness changes on a hot-dipped galvanized sheet steel during deformation at low strain levels. Acta materialia 2004, 52(5):1211–1222. 10.1016/j.actamat.2003.11.005CrossRefGoogle Scholar
  12. 12.
    Wichern C, De Cooman B, Van Tyne C: Surface roughness of a hot-dipped galvanized sheet steel as a function of deformation mode. J Mater Process Tech 2005, 160(3):278–288. 10.1016/j.jmatprotec.2004.06.017CrossRefGoogle Scholar
  13. 13.
    Brochu M, Yokota T, Satoh S: Analysis of grain colonies in type 430 ferritic stainless steels by electron back scattering diffraction (ebsd). ISIJ Int 1997, 37(9):872–877. 10.2355/isijinternational.37.872CrossRefGoogle Scholar
  14. 14.
    Guangnan C, Huan S, Shiguang H, Baudelet B: Roughening of the free surfaces of metallic sheets during stretch forming. Mater Sci Eng 1990, 128(1):33–38. 10.1016/0921-5093(90)90093-ICrossRefGoogle Scholar
  15. 15.
    Huh M-Y, Engler O: Effect of intermediate annealing on texture, formability and ridging of 17% Cr ferritic stainless steel sheet. Mater Sci Eng 2001, 308(1):74–87. 10.1016/S0921-5093(00)01995-XCrossRefGoogle Scholar
  16. 16.
    Becker R: Effects of strain localization on surface roughening during sheet forming. Acta Materialia 1998, 46(4):1385–1401. 10.1016/S1359-6454(97)00182-1CrossRefGoogle Scholar
  17. 17.
    Schaefer C, Song J, Gottstein G: Modeling of texture evolution in the deformation zone of second-phase particles. Acta Materialia 2009, 57(4):1026–1034. 10.1016/j.actamat.2008.10.052CrossRefGoogle Scholar
  18. 18.
    Chakraborty A, Ray R: Influence of microstructure and texture on the formability character of industrially produced galvannealed coatings on three interstitial free steels. Surf Coating Tech 2009, 203(13):1756–1764. 10.1016/j.surfcoat.2008.12.014CrossRefGoogle Scholar
  19. 19.
    Hamada J-I, Matsumoto Y, Fudanoki F, Maeda S: Effect of initial solidified structure on ridging phenomenon and texture in type 430 ferritic stainless steel sheets. ISIJ Int 2003, 43(12):1989–1998. 10.2355/isijinternational.43.1989CrossRefGoogle Scholar
  20. 20.
    Humphreys F: Local lattice rotations at second phase particles in deformed metals. Acta Metallurgica 1979, 27(12):1801–1814. 10.1016/0001-6160(79)90071-3CrossRefGoogle Scholar
  21. 21.
    Humphreys F, Kalu P: The plasticity of particle-containing polycrystals. Acta Metallurgica Et Materialia 1990, 38(6):917–930. 10.1016/0956-7151(90)90164-CCrossRefGoogle Scholar
  22. 22.
    Li S, Van Houtte P, Kalidindi SR (2004) A quantitative evaluation of the deformation texture predictions for aluminium alloys from crystal plasticity finite element method. Model Simulat Mater Sci Eng 12(5): 845. Li S, Van Houtte P, Kalidindi SR (2004) A quantitative evaluation of the deformation texture predictions for aluminium alloys from crystal plasticity finite element method. Model Simulat Mater Sci Eng 12(5): 845.CrossRefGoogle Scholar
  23. 23.
    Radhakrishnan B, Sarma G: The effect of coarse non-deformable particles on the deformation and static recrystallization of aluminium alloys. Phil Mag 2004, 84(22):2341–2366. 10.1080/14786430410001689990CrossRefGoogle Scholar
  24. 24.
    Rangarajan V, Cheng C, Franks L: Texture in the delta Fe-Zn phase formed in galvanneal coatings. Surf Coating Tech 1993, 56(3):209–214. 10.1016/0257-8972(93)90253-KCrossRefGoogle Scholar
  25. 25.
    Savoie J, Jonas J: Simulation of the deformation textures induced by deep drawing in extra low carbon steel sheets. Acta metallurgica et materialia 1994, 42(12):4101–4116. 10.1016/0956-7151(94)90188-0CrossRefGoogle Scholar
  26. 26.
    Shin H-J, An J-K, Park SH, Lee DN: The effect of texture on ridging of ferritic stainless steel. Acta Materialia 2003, 51(16):4693–4706. 10.1016/S1359-6454(03)00187-3CrossRefGoogle Scholar
  27. 27.
    Sidor JJ, Petrov RH, Kestens LA: Microstructural and texture changes in severely deformed aluminum alloys. Mater Char 2011, 62(2):228–236. 10.1016/j.matchar.2010.12.004CrossRefGoogle Scholar
  28. 28.
    Stoudt M, Hubbard J: Analysis of deformation-induced surface morphologies in steel sheet. Acta materialia 2005, 53(16):4293–4304. 10.1016/j.actamat.2005.05.038CrossRefGoogle Scholar
  29. 29.
    Zhao Z, Radovitzky R, Cuitino A: A study of surface roughening in fcc metals using direct numerical simulation. Acta Materialia 2004, 52(20):5791–5804. 10.1016/j.actamat.2004.08.037CrossRefGoogle Scholar
  30. 30.
    Lebensohn R, Tome C: A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystal. Mater Sci Eng 1994, 175(1):71–82. 10.1016/0921-5093(94)91047-2CrossRefGoogle Scholar
  31. 31.
    Lebensohn R, Tome C: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metallurgica et Materialia 1993, 41(9):2611–2624. 10.1016/0956-7151(93)90130-KCrossRefGoogle Scholar

Copyright information

© Goo and Kang; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Sheet product design groupHyundai Steel Co.DangJinSouth Korea

Personalised recommendations