Advertisement

Making materials science and engineering data more valuable research products

  • Charles H WardEmail author
  • James A Warren
  • Robert J Hanisch
Review

Abstract

Both the global research community and federal governments are embracing a move toward more open sharing of the products of research. Historically, the primary product of research has been peer-reviewed journal articles and published technical reports. However, advances in information technology, new 'open access' business models, and government policies are working to make publications and supporting materials much more accessible to the general public. These same drivers are blurring the distinction between the data generated through the course of research and the associated publications. These developments have the potential to significantly enhance the value of both publications and supporting digital research data, turning them into valuable assets that can be shared and reused by other researchers. The confluence of these shifts in the research landscape leads one to the conclusion that technical publications and their supporting research data must be bound together in a rational fashion. However, bringing these two research products together will require the establishment of new policies and a supporting data infrastructure that have essentially no precedent in the materials community, and indeed, are stressing many other fields of research. This document raises the key issues that must be addressed in developing these policies and infrastructure and suggests a path forward in creating the solutions.

Keywords

Materials data Data policy Data repository ICME MGI Integrated computational materials engineering Materials genome initiative Data archiving 

Notes

Acknowledgements

The authors wish to thank Clare Paul and Jeff Simmons for helpful discussions in preparing this manuscript.

This article has undergone an impartial review process. Charles H. Ward excused himself from any tasks associated with the processing of this article. The review process was handled entirely by other editors and all decisions regarding this publication have been made by them.

Supplementary material

40192_2014_22_MOESM1_ESM.gif (28 kb)
Authors’ original file for figure 1
40192_2014_22_MOESM2_ESM.gif (24 kb)
Authors’ original file for figure 2
40192_2014_22_MOESM3_ESM.gif (23 kb)
Authors’ original file for figure 3
40192_2014_22_MOESM4_ESM.gif (33 kb)
Authors’ original file for figure 4

References

  1. 1.
    MRS-TMS 'big data' survey JOM 2013, 65: 1073. doi:10.1007/s11837–013–0724-y doi:10.1007/s11837-013-0724-yGoogle Scholar
  2. 2.
    Integrated computational materials engineering: a transformational discipline for improved competitiveness and national security. The National Academies Press, Washington, DC; 2008.Google Scholar
  3. 3.
    Final NIH statement on sharing research data. 2003.Google Scholar
  4. 4.
    Policies on release of human genomic sequence data. 2013.Google Scholar
  5. 5.
    Grant proposal guide. 2013.Google Scholar
  6. 6.
    The materials genome initiative. 2011.Google Scholar
  7. 7.
    Opportunities for data exchange. 2014.Google Scholar
  8. 8.
    Science as an open enterprise. 2012.Google Scholar
  9. 9.
    Research councils UK. 2014.Google Scholar
  10. 10.
    Holdren JP: Increasing access to the results of federally funded scientific research. 2013.Google Scholar
  11. 11.
    Project open data. 2014.Google Scholar
  12. 12.
    GenBank overview. 2013.Google Scholar
  13. 13.
    Dryad. 2014.Google Scholar
  14. 14.
    Thermodynamics Research Center. 2014.Google Scholar
  15. 15.
    Peer REview for Publication & Accreditation of Research data in the Earth sciences [Online]. 2014.Google Scholar
  16. 16.
    Virtual observatory. 2014.Google Scholar
  17. 17.
    Database: The Journal of Biological Databases and Curation. 2014.Google Scholar
  18. 18.
    Scientific data. Macmillan. 2014.Google Scholar
  19. 19.
    PLoS ONE editorial policies. PLoS One: . Accessed 13 May 2014, [http://www.plosone.org/static/editorial#sharing] PLoS ONE editorial policies. PLoS One: . Accessed 13 May 2014
  20. 20.
    Warren JA, Boisvert RF: Building the materials innovation infrastructure: data and standards a Materials Genome Initiative Workshop. National Institute of Standards and Technology, Gaithersburg, MD; 2012.CrossRefGoogle Scholar
  21. 21.
    Whitlock MC, McPeek MA, Rausher MD, Rieseberg L, Moore AJ: Data archiving. Am Nat 2010, 175: 145–146. doi:10.1086/650340 doi:10.1086/650340 10.1086/650340CrossRefGoogle Scholar
  22. 22.
    Data citation index. 2014.Google Scholar
  23. 23.
    (2012) Notes for authors. Acta Crystallogr C68:e3-e11, doi:10.1107/S0108270111047019 (2012) Notes for authors. Acta Crystallogr C68:e3-e11, doi:10.1107/S0108270111047019Google Scholar
  24. 24.
    Koga N, Schick C, Vyazovkin S: New procedures for articles reporting thermophysical properties. Thermochim Acta 2013, 555: iii. doi:10.1016/S0040–6031(13)00060–9 doi:10.1016/S0040-6031(13)00060-9 10.1016/S0040-6031(13)00060-9CrossRefGoogle Scholar
  25. 25.
    Miller M, Suter R, Lienert U, Beaudoin A, Fontes E, Almer E, Schuren J: High-energy needs and capabilities to study multiscale phenomena in crystalline materials. Synchrotron Radiat News 2012, 25(6):18–26. doi:10.1080/08940886.2012.736834 doi:10.1080/08940886.2012.736834 10.1080/08940886.2012.736834CrossRefGoogle Scholar
  26. 26.
    Ember C, Hanisch R: Sustaining domain repositories for digital data: a white paper. 2013.Google Scholar
  27. 27.
    National Institute of Standards and Technology. 2014.Google Scholar
  28. 28.
    Shade PA, Groeber MA, Schuren JC, Uchic MD: Experimental measurement of surface strains and local lattice rotations combined with 3D microstructure reconstruction from deformed polycrystalline ensembles at the micro-scale. Integr Mater Manuf Innovation 2013, 2: 5. doi:10.1186/2193–9772–2-5 doi:10.1186/2193-9772-2-5 10.1186/2193-9772-2-5CrossRefGoogle Scholar
  29. 29.
    Shade PA, Groeber MA, Schuren JC, Uchic MD: 3D microstructure reconstruction of polycrystalline nickel micro-tension test. 2013.Google Scholar
  30. 30.
    Research data management services at JHU. 2014.Google Scholar
  31. 31.
    Labarchives (2014) LabArchives LLC. Carlsbad, CA, . Accessed 13 May 2014, [http://labarchives.com/] Labarchives (2014) LabArchives LLC. Carlsbad, CA, . Accessed 13 May 2014
  32. 32.
    Figshare, London. 2014.Google Scholar
  33. 33.
    ASM International. 2014.Google Scholar
  34. 34.
    Cheung K, Hunter J, Drennan J: MatSeek: an ontology-based federated search interface for materials scientists. IEEE Intell Syst 2009, 24: 47–56. doi:10.1109/MIS.2009.13 doi:10.1109/MIS.2009.13 10.1109/MIS.2009.13CrossRefGoogle Scholar
  35. 35.
    Freiman S, Madsen L, Rumble J: A perspective on materials databases. Am Ceram Soc Bull 2011, 90(2):28–32.Google Scholar
  36. 36.
    Rumble J: Standards for materials databases: ASTM Committee E49. In Computerization and networking of materials databases: Second Volume, ASTM STP 1106. Edited by: Kaufman JG, Glatzman JS. American Society for Testing and Materials, Philadelphia; 1991:73–83. 10.1520/STP17675SCrossRefGoogle Scholar
  37. 37.
    ASTM E1314–89(1999): Practice for structuring terminological records relating to computerized test reporting and materials design formats. ASTM International, West Conshohocken, PA; 1999.Google Scholar
  38. 38.
    Rumble J: E-Materials Data. ASTM International. Stand News. 2014.Google Scholar
  39. 39.
    Austin T, Bullough C, Gagliardi D, Leal D, Loveday M: Prenormative research into standard messaging formats for engineering materials data. Int J Dig Curation 2013, 8: 5–13. doi:10.2218/ijdc.v8i1.245 doi:10.2218/ijdc.v8i1.245 10.2218/ijdc.v8i1.245CrossRefGoogle Scholar
  40. 40.
    Schmitz GJ, Prahl U: ICMEg—the integrated computational materials engineering expert group—a new European coordination action. Integr Mater Manuf Innov 2014, 3: 2. doi:10.1186/2193 doi:10.1186/2193 10.1186/2193-9772-3-2CrossRefGoogle Scholar
  41. 41.
    Campbell CE, Kattner UR, Liu Z-K: The development of phase-based property data using the CALPHAD method and infrastructure needs. Integr Mater Manuf Innov 2014, 3: 12. doi:10.1186/2193–9772–3-12 doi:10.1186/2193-9772-3-12 10.1186/2193-9772-3-12CrossRefGoogle Scholar
  42. 42.
    Jackson MA, Groeber MA, Uchic MD, Rowenhorst DJ, De Graef M: h5ebsd: an archival data format for electron back-scatter diffraction data sets. Integr Mater Manuf Innov 2014, 3: 4. doi:10.1186/2193–9772–3-4 doi:10.1186/2193-9772-3-4 10.1186/2193-9772-3-4CrossRefGoogle Scholar
  43. 43.
    For attribution-developing data attribution and citation practices and standards. National Academies Press, Washington; 2012.Google Scholar
  44. 44.
    Socha YM: Out of sight, out of mind: the current state of practice, policy, and technology for the citation of data. Data Sci J 2013, 12f: 13.Google Scholar
  45. 45.
    Joint declaration of data citation principles. FORCE11. 2014.Google Scholar
  46. 46.
    STM-DataCite joint statement. 2012.Google Scholar
  47. 47.
    Nanotechnology knowledge infrastructure data readiness levels discussion draft. 2013.Google Scholar
  48. 48.
    Downs RT, Hall-Wallace M: The American mineralogist crystal structure database. Am Mineral 2003, 88: 247–250.CrossRefGoogle Scholar
  49. 49.
    Cowles B, Backman D, Dutton R: Verification and validation of ICME methods and models for aerospace applications. Integr Mater Manuf Innov 2012, 1: 2. doi:10.1186/2193–9772–1-2 doi:10.1186/2193-9772-1-2 10.1186/2193-9772-1-2CrossRefGoogle Scholar
  50. 50.
    Assessing the reliability of complex models. The National Academies Press, Washington, DC; 2012.Google Scholar
  51. 51.
    Madison M: The future of scientific knowledge discovery in open networked environments. National Academies Press, Washington; 2012:101–106.Google Scholar
  52. 52.
    Ward CH: Implications of integrated computational materials engineering with respect to export control. AFRL-RX-WP-TM-2013–0156. Defense Technical Information Center, Fort Belvoir, VA; 2013.Google Scholar
  53. 53.
    Creative Commons. 2014.Google Scholar

Copyright information

© Ward et al.; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Charles H Ward
    • 1
    Email author
  • James A Warren
    • 2
  • Robert J Hanisch
    • 2
    • 3
  1. 1.Air Force Research LaboratoryMaterials and Manufacturing Directorate, Wright-Patterson AFBUSA
  2. 2.National Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Space Telescope Science InstituteBaltimoreUSA

Personalised recommendations