Advertisement

Three-dimensional sampling of material structure for property modeling and design

  • McLean P EchlinEmail author
  • William C Lenthe
  • Tresa M Pollock
Research Article
Part of the following topical collections:
  1. Three-Dimensional Materials Science

Abstract

Newly developed 3-D tomographic techniques permit acquisition of quantitative materials data for input to structure-property models. At the mesoscale, techniques that enable sampling of larger material volumes provide information such as grain size and morphology, 3-D interfacial character, and chemical gradients. However, systematic approaches for determining the characteristic material volume for 3-D analysis have yet to be established. In this work, the variability in properties due to microstructure is discussed in the context of a methodology for defining volume elements that link microstructure, properties, and design. As such, we propose a 3-D sampling methodology based on convergence of microstructural parameters and associated properties and design considerations.

Keywords

Representative volume element Microstructure volume elements Property volume elements Femtosecond laser Tomography Serial sectioning 

Notes

Acknowledgements

The authors acknowledge the Office of Naval Research ONR-DURIP grant no. N000141010783 for the support of the development of the TriBeam system and Air Force grant FA9550-12-1-0445 for the support of this research. We also thank FEI Corporation for supporting the development of the TriBeam system. The authors acknowledge David Rowenhorst for visualization code in IDL and Michael Uchic for useful discussions on tomography. The thoughtful comments from the reviewers are also greatly appreciated.

Supplementary material

40192_2014_21_MOESM1_ESM.gif (65 kb)
Authors’ original file for figure 1
40192_2014_21_MOESM2_ESM.gif (60 kb)
Authors’ original file for figure 2
40192_2014_21_MOESM3_ESM.gif (41 kb)
Authors’ original file for figure 3
40192_2014_21_MOESM4_ESM.gif (34 kb)
Authors’ original file for figure 4
40192_2014_21_MOESM5_ESM.gif (44 kb)
Authors’ original file for figure 5
40192_2014_21_MOESM6_ESM.gif (14 kb)
Authors’ original file for figure 6
40192_2014_21_MOESM7_ESM.gif (53 kb)
Authors’ original file for figure 7
40192_2014_21_MOESM8_ESM.gif (21 kb)
Authors’ original file for figure 8
40192_2014_21_MOESM9_ESM.gif (73 kb)
Authors’ original file for figure 9
40192_2014_21_MOESM10_ESM.gif (18 kb)
Authors’ original file for figure 10

References

  1. 1.
    Midgley PA, Weyland M (2003) 3D electron microscopy in the physical sciences: the development of z-contrast and {EFTEM} tomography In: Proceedings of the international workshop on strategies and advances in atomic level spectroscopy and analysis. Ultramicroscopy. (3–4):413–431. doi:10.1016/S0304–3991(03)00105–0.CrossRefGoogle Scholar
  2. 2.
    Holzer L, Indutnyi F, Gasser P, Munch B, Wegmann M: Three-dimensional analysis of porous BaTiO3 ceramics using FIB, nanotomography. J Microsc 2004, 216(1):84–95. doi:10.1111/j.0022–2720.2004.01397.xCrossRefGoogle Scholar
  3. 3.
    Uchic MD, Groeber MA, Dimiduk DM, Simmons JP: 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM In: Viewpoint set no. 4: 3D characterization and analysis of materials. Organized by G. Spanos. Scripta Mater 2006, 55(1):23–28. doi:10.1016/j.scriptamat.2006.02.039CrossRefGoogle Scholar
  4. 4.
    Jensen DJ, Poulsen HF: The three dimensional x-ray diffraction technique. Mater Char 2012, 72(0):1–7. doi:10.1016/j.matchar.2012.07.012CrossRefGoogle Scholar
  5. 5.
    Suter RM, Hennessy D, Xiao C, Lienert U (2006) Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: single-crystal verification. Rev Sci Instrum 77(12). doi:10.1063/1.2400017.CrossRefGoogle Scholar
  6. 6.
    Landis EN, Keane DT: X-ray microtomography. Mater Char 2010, 61(12):1305–1316. doi:10.1016/j.matchar.2010.09.012CrossRefGoogle Scholar
  7. 7.
    Alkemper J, Voorhees PW: Quantitative serial sectioning analysis. J Microsc 2001, 201(3):388–394. doi:10.1046/j.1365–2818.2001.00832.xCrossRefGoogle Scholar
  8. 8.
    Spowart J, Mullens H, Puchala B (2003) Collecting and analyzing microstructures in three dimensions: a fully automated approach55(10): 35–37. doi:10.1007/s11837–003–0173–0.Google Scholar
  9. 9.
    Rowenhorst DJ, Lewis AC, Spanos G: Three-dimensional analysis of grain topology and interface curvature in a beta-titanium alloy. Acta Mater 2010, 58(16):5511–5519. doi:10.1016/j.actamat.2010.06.030CrossRefGoogle Scholar
  10. 10.
    Uchic M, Groeber M, Spowart J, Shah M, Scott M, Callahan P, Shiveley A, Chapman M (2012) An automated multi-modal serial sectioning system for characterization of grain-scale microstructures in engineering materials (preprint). Technical report, DTIC Document.Google Scholar
  11. 11.
    Echlin MP, Mottura A, Torbet CJ, Pollock TM: A new TriBeam system for three-dimensional multimodal analysis. Rev Sci Instrum 2012, 83(2):doi:10.1063/1.3680111.CrossRefGoogle Scholar
  12. 12.
    Gitman IM, Askes H, Sluys LJ: Representative volume: existence and size determination. Eng Fract Mech 2007, 74(16):2518–2534. doi:10.1016/j.engfracmech.2006.12.021CrossRefGoogle Scholar
  13. 13.
    Hill R: Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solid 1963, 11(5):357–372. doi:10.1016/0022–5096(63)90036-XCrossRefGoogle Scholar
  14. 14.
    Ostoja-Starzewski M: Material spatial randomness: from statistical to representative volume element. Probabilist Eng Mech 2006, 21(2):112–132. doi:10.1016/j.probengmech.2005.07.007CrossRefGoogle Scholar
  15. 15.
    Niezgoda SR, Turner DM, Fullwood DT, Kalidindi SR: Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics. Acta Mater 2010, 13: 4432–4445. doi:10.1016/j.actamat.2010.04.041CrossRefGoogle Scholar
  16. 16.
    Groeber M, Haley BK, Uchic MD, Dimiduk DM, Ghosh S: 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater Char 2006, 57: 259–273. doi:10.1016/j.matchar.2006.01.019CrossRefGoogle Scholar
  17. 17.
    Swaminathan S, Ghosh S, Pagano N: Statistically equivalent representative volume elements for unidirectional composite microstructures: part i - without damage. J Compos Mater 2006, 40(7):583–604.CrossRefGoogle Scholar
  18. 18.
    Shan Z, Gokhale AM: Representative volume element for non-uniform micro-structure. Comput Mater Sci 2002, 24(3):361–379. doi:10.1016/S0927–0256(01)00257–9CrossRefGoogle Scholar
  19. 19.
    Qidwai SM, Turner DM, Niezgoda SR, Lewis AC, Geltmacher AB, Rowenhorst DJ, Kalidindi SR: Estimating the response of polycrystalline materials using sets of weighted statistical volume elements. Acta Mater 2012, 60: 5284–5299. doi:10.1016/j.actamat.2012.06.026CrossRefGoogle Scholar
  20. 20.
    Groeber M, Ghosh S, Uchic MD, Dimiduk DM: A framework for automated analysis and simulation of 3d polycrystalline microstructures. part 2: synthetic structure generation. Acta Mater 2008, 56(6):1274–1287.CrossRefGoogle Scholar
  21. 21.
    McDowell DL, Ghosh S, Kalidindi SR: Representation and computational structure-property relations of random media. JOM 2011, 63(3):45–51. doi:10.1007/s11837–011–0045-yCrossRefGoogle Scholar
  22. 22.
    Brundidge CL, Pollock TM: Processing to fatigue properties: benefits of high gradient casting for single crystal airfoils.In Superalloys 2012 Edited by: Huron ES, Reed RC, Hardy MC, Mills MJ, Montero RE, Portella PD, Telesman J. Wiley, Hoboken; 2012, 379–385. doi:10.1002/9781118516430.ch41. [http://dx.doi.org/10.1002/9781118516430.ch41] http://dx.doi.org/10.1002/9781118516430.ch41CrossRefGoogle Scholar
  23. 23.
    Przybyla CP, McDowell DL: Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy {IN100}. Int J Plast 2010, 26(3):372–394. doi:10.1016/j.ijplas.2009.08.001CrossRefGoogle Scholar
  24. 24.
    Vernerey F, Liu WK, Moran B, Olson G: Multi-length scale micromorphic process zone model. Comput Mech 2009, 44(3):433–445.CrossRefGoogle Scholar
  25. 25.
    McDowell DL: A perspective on trends in multiscale plasticity. Int J Plast 2010, 26(9):1280–1309.CrossRefGoogle Scholar
  26. 26.
    Rowenhorst D, Kuang J, Thornton K, Voorhees P: Three-dimensional analysis of particle coarsening in high volume fraction solid–liquid mixtures. Acta mater 2006, 54(8):2027–2039.CrossRefGoogle Scholar
  27. 27.
    Madison J, Spowart J, Rowenhorst D, Pollock T: The three-dimensional reconstruction of the dendritic structure at the solid-liquid interface of a Ni-based single crystal. JOM 2008, 60(7):26–30.CrossRefGoogle Scholar
  28. 28.
    Rowenhorst D, Voorhees P: Measurement of interfacial evolution in three dimensions. Annu Rev Mater Res 2012, 42: 105–124.CrossRefGoogle Scholar
  29. 29.
    MacSleyne J, Uchic MD, Simmons JP, Graef MD: Three-dimensional analysis of secondary γ′ precipitates in Rene-88 {DT} and UMF-20 superalloys. Acta Mater 2009, 57(20):6251–6267. doi:10.1016/j.actamat.2009.08.053CrossRefGoogle Scholar
  30. 30.
    Groeber M, Ghosh S, Uchic MD, Dimiduk DM: A framework for automated analysis and simulation of 3D polycrystalline microstructures.: part 1: statistical characterization. Acta Mater 2008, 56(6):1257–1273. doi:10.1016/j.actamat.2007.11.041CrossRefGoogle Scholar
  31. 31.
    Taklo MM, Klumpp A, Ramm P, Kwakman L, Franz G: Bonding and TSV in 3D IC integration: physical analysis with plasma FIB. Microsc Anal 2011, 25(7):9–12.Google Scholar
  32. 32.
    Altmann F, Beyersdorfer J, Schischka J, Krause M, Franz G, Kwakman L: Cross section analysis of Cu filled TSVS based on high throughput plasma-FIB milling. In ISTFA, 2012: ASM international conference proceedings of the 38th international symposium for testing and failure analysis. ASM International, Geauga County; 2012:39–43.Google Scholar
  33. 33.
    Torquato S: Random heterogeneous materials: microstructure and macroscopic properties. Interdisciplinary applied mathematics: mechanics and materials, vol. 16.. Springer, New York; 2002.Google Scholar
  34. 34.
    Echlin MP, Mottura A, Wang M, Mignone PJ, Riley DP, Franks GV, Pollock TM: Three-dimensional characterization of the permeability of W-Cu composites using a new “Tribeam” technique. Acta Materi 2013, 64: 307–315. doi:10.1016/j.actamat.2013.10.043CrossRefGoogle Scholar
  35. 35.
    Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solid Struct 2003, 40: 3647–3679. doi:10.1016/S0020–7683(03)00143–4CrossRefGoogle Scholar
  36. 36.
    Kanit T, N’Guyen F, Forest S, Jeulin D, Reed M, Singleton S: Apparent and effective physical properties of heterogeneous materialsrepresentativity of samples of two materials from food industry. Comput Meth Appl Mech Eng 2006, 195(33–36):3960–3982. doi:10.1016/j.cma.2005.07.022CrossRefGoogle Scholar
  37. 37.
    Pelissou C, Baccou J, Monerie Y, Perales F: Determination of the size of the representative volume element for random quasi-brittle composites. Int J Solid Struct 2009, 46(14–15):2842–2855. doi:10.1016/j.ijsolstr.2009.03.015CrossRefGoogle Scholar
  38. 38.
    Lazzarin P, Berto F: Some expressions for the strain energy in a finite volume surrounding the root of blunt v-notches. Int J Fract 2005, 135(1–4):161–185.CrossRefGoogle Scholar
  39. 39.
    Echlin MP, Pollock TM: A statistical sampling approach for measurement of fracture toughness parameters in a 4330 steel by 3-D femtosecond laser-based tomography. Acta Mater 2013, 61(15):5791–5799. doi:10.1016/j.actamat.2013.06.023CrossRefGoogle Scholar
  40. 40.
    An Introduction to error analysis: the study of uncertainties in physical measurements. A series of books in physics. University Science Books, Herndon; 1997.Google Scholar
  41. 41.
    Groeber M, Ghosh S, Uchic MD, Dimiduk DM: Developing a robust 3-D characterization-representation framework for modeling polycrystalline materials. JOM 2007, 59(9):32–36.CrossRefGoogle Scholar
  42. 42.
    Przybyla C, McDowell D: Microstructure-sensitive extreme-value probabilities of high-cycle fatigue for surface vs. subsurface crack formation in duplex ti–6al–4v. Acta Mater 2012, 60(1):293–305.CrossRefGoogle Scholar
  43. 43.
    Jha S, Caton M, Larsen J: A new paradigm of fatigue variability behavior and implications for life prediction. Mater Sci Eng 2007, 468: 23–32.CrossRefGoogle Scholar

Copyright information

© Echlin et al.; licensee Springer 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • McLean P Echlin
    • 1
    Email author
  • William C Lenthe
    • 1
  • Tresa M Pollock
    • 1
  1. 1.University of California Santa BarbaraMaterials DeptUSA

Personalised recommendations