Advertisement

Advances in Difference Equations

, 2019:427 | Cite as

Some new inequalities for generalized fractional conformable integral operators

  • Kottakkaran Sooppy NisarEmail author
  • Gauhar Rahman
  • Aftab Khan
Open Access
Research
  • 118 Downloads

Abstract

The present paper aims to establish certain new classes of integral inequalities for a class of n (\(n\in \mathbb{N}\)) positive continuous and decreasing functions by utilizing the generalized fractional conformable integral operators (FCIO) recently defined by Khan and Khan. From these results, we also derive several particular cases.

Keywords

Fractional integral Generalized conformable fractional integral Integral inequalities 

1 Introduction

Fractional calculus earned more recognition due to its applications in diverse domains. Recent research focuses on developing a large number of the fractional integral operators (FIO) and their applications in multiple disciplines of sciences (see [13, 14, 20, 26]). In [15], Liu et al. introduced interesting integral inequalities for continuous functions on \([a,b]\). Later on, Dahmani [8] generalized the work of [15] involving the Riemann–Liouville fractional integral operators. In [9], Dahmani and Tabharit introduced weighted Grüss type inequalities involving fractional integral operators. Dahmani [7] established some new inequalities for fractional integrals. Polya–Szego and Chebyshev type inequalities involving the Riemann–Liouville fractional integral operators are found in [19]. Nisar et al. [16] established some inequalities involving extended gamma and the Kummar confluent hypergeometric k-functions. In [28], Set et al. established generalized Grüss type inequalities for k-fractional integrals and applications. Certain Gronwall inequalities associated with Riemann–Liouville k and Hadamard k-fractional derivatives and their applications are found in the work of Nisar et al. [17]. The \((k,s)\)-fractional integrals and their applications are found in [27]. Rahman et al. [23] presented certain inequalities via \((k,\rho )\)-fractional integral operators. In [11], the authors introduced the idea of fractional conformable derivative operators with a shortcoming that the new derivative operator does not tend to the original function when the order \(\rho \rightarrow 0\). In [1], the author studied certain various properties of the fractional conformable derivative operators and raised the problem of how to use conformable derivative operators to generate more general types of nonlocal fractional derivative operators, after that the method was demonstrated in [10].

The generalized FCIO defined in [12] is given by
$$\begin{aligned} {}_{\alpha }^{\mu }\mathfrak{I}_{r^{+}}^{\beta }f(x)= \frac{1}{\varGamma ( \beta )} \int _{r}^{x} \biggl(\frac{x^{\alpha +\mu }-\tau ^{\alpha + \mu }}{\alpha +\mu } \biggr)^{\beta -1}\frac{f(\tau )}{ \tau ^{1-\alpha -\mu }}\,d\tau ,\quad x>r, \end{aligned}$$
(1)
and
$$\begin{aligned} {}_{\alpha }^{\mu }\mathfrak{I}_{s^{-}}^{\beta }f(x)= \frac{1}{\varGamma ( \beta )} \int _{x}^{s} \biggl(\frac{\tau ^{\alpha +\mu }-x^{\alpha + \mu }}{\alpha +\mu } \biggr)^{\beta -1}\frac{f(\tau )}{ \tau ^{1-\alpha -\mu }}\,d\tau ,\quad x< s, \end{aligned}$$
(2)
where \(\beta \in \mathbb{C}\), \(\Re (\beta )>0\), \(\alpha \in (0,1] \), \(\mu \in \mathbb{R}\), \(\alpha +\mu \neq 0\), and Γ is the gamma function [29].

Remark 1

(i) If we set \(\mu =0\) in (1) and (2), then we have the following Riemann–Liouville (R-L) type FCIO:
$$\begin{aligned} {}_{\alpha }\mathfrak{I}_{r^{+}}^{\beta }f(x)= \frac{1}{\varGamma (\beta )} \int _{r}^{x} \biggl(\frac{x^{\alpha }-\tau ^{\alpha }}{\alpha } \biggr) ^{\beta -1}\frac{f(\tau )}{\tau ^{1-\alpha }}\,d\tau ,\quad x>r, \end{aligned}$$
(3)
and
$$\begin{aligned} {}_{\alpha }\mathfrak{I}_{s^{-}}^{\beta }f(x)= \frac{1}{\varGamma (\beta )} \int _{x}^{s} \biggl(\frac{\tau ^{\alpha }-x^{\alpha }}{\alpha } \biggr) ^{\beta -1}\frac{f(\tau )}{\tau ^{1-\alpha }}\,d\tau ,\quad x< s, \end{aligned}$$
(4)
where \(\beta \in \mathbb{C}\), \(\Re (\beta )>0\), \(\alpha \in (0,1] \).
(ii) If \(\alpha =1\) in 3 and 4, then we obtain the following R-L FIO:
$$\begin{aligned} \mathfrak{I}_{r^{+}}^{\beta }f(x)=\frac{1}{\varGamma (\beta )} \int _{r} ^{x} (x-\tau )^{\beta -1}f(\tau )\,d \tau ,\quad x>r, \end{aligned}$$
(5)
and
$$\begin{aligned} \mathfrak{I}_{s^{-}}^{\beta }f(x)=\frac{1}{\varGamma (\beta )} \int _{x} ^{s} (\tau -x )^{\beta -1}f(\tau )\,d \tau ,\quad x< s, \end{aligned}$$
(6)
where \(\beta \in \mathbb{C}\), \(\Re (\beta )>0\).

Recently, the researchers [21, 24] established inequalities of Grüss type and Čebyšev type by utilizing fractional conformable integral operators. Rahman et al. [25] established certain Chebyshev type inequalities involving fractional conformable integral operators. In [22], the authors introduced the Minkowski inequalities via generalized proportional fractional integral operators. Some new inequalities involving fractional conformable integrals are found in the work of Nisar et al. [18]. Adjabi et al. [6] presented generalized fractional integral operators and Gronwall type inequalities with applications. In [2], Abdeljawad established a Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. Abdeljawad et al. [4] introduced Lyapunov type inequalities for mixed nonlinear forced differential equations within conformable derivatives. Fractional operators with exponential kernels and a Lyapunov type inequality are found in [3]. Abdeljawad et al. [5] presented a generalized Lyapunov type inequality in the frame of conformable derivatives.

Our aim in this paper is to generalize the inequalities obtained earlier by [8, 15] by employing the left generalized fractional conformable integral operator (1).

2 Main results

In this section, we employ the left generalized FCIO to establish the generalization of some classical inequalities.

Theorem 1

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)benpositive continuous and decreasing functions on the interval\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3, \ldots ,n\}\). Then, for generalized fractional conformable integral (1), we have
$$\begin{aligned} \frac{{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } [\prod_{i \neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]}{{}_{\alpha } ^{\mu }\mathfrak{I}_{r}^{\beta } [\prod_{i=1}^{n}g_{i}^{\gamma_{i}}(x) ]}\geq \frac{{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{ \beta } [(x-r)^{\vartheta }\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]}{{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{ \beta } [(x-r)^{\vartheta }\prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) ]}, \end{aligned}$$
(7)
where\(\beta \in \mathbb{C}\), \(\alpha \in (0,1]\), \(\mu \in \mathbb{R}\), \(\alpha +\mu \neq 0\), and\(\Re (\beta )>0\).

Proof

Since \((g_{i})_{i=1,2,3,\ldots ,n}\) are n positive continuous and decreasing functions on the interval \([r,s]\). Therefore, we have
$$\begin{aligned} \bigl((\rho -r)^{\vartheta }-(t-r)^{\vartheta } \bigr) \bigl(g_{p} ^{\sigma -\gamma _{p}}(t)-g_{p}^{\sigma -\gamma _{p}}(\rho ) \bigr) \geq 0, \end{aligned}$$
(8)
where \(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\), \(t, \rho \in [r,x]\) and for any fixed \(p\in \{1,2,3,\ldots ,n\}\).
Define a function
$$\begin{aligned} {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta }(x,\rho ,t) &=\frac{1}{ \varGamma (\beta )} \biggl(\frac{x^{\alpha +\mu }-t^{\alpha +\mu }}{ \alpha +\mu } \biggr)^{\beta -1} \\ &\quad {}\times \frac{\prod_{i=1}^{n}g_{i}^{\gamma _{i}}(t)}{t^{1-\alpha - \mu }} \bigl((\rho -r)^{\vartheta }-(t-r)^{\vartheta } \bigr) \bigl(g_{p}^{\sigma -\gamma _{p}}(t)-g_{p}^{\sigma -\gamma _{p}}( \rho ) \bigr). \end{aligned}$$
(9)
We observe that the above function satisfies all the assumptions stated in Theorem 1, and hence the function \({}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\beta }(x,\rho ,t)\) is positive for all \(t\in (r,x)\) (\(x>r\)). Integrating both sides of (9) with respect to t over \((r,x)\), we have
$$\begin{aligned} 0&\leq \int _{r}^{x}{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\beta }(x, \rho ,t)\,dt \\ &=\frac{1}{\varGamma (\beta )} \int _{r}^{x} \biggl(\frac{x^{ \alpha +\mu }-t^{\alpha +\mu }}{\alpha +\mu } \biggr)^{\beta -1} \\ &\quad {}\times \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(t) \bigl((\rho -r)^{\vartheta }-(t-r)^{\vartheta } \bigr) \bigl(g_{p}^{\sigma -\gamma _{p}}(t)-g_{p}^{\sigma -\gamma _{p}}( \rho ) \bigr)\frac{dt}{t^{1-\alpha -\mu }} \\ &= \Biggl[(\rho -r)^{\vartheta }{}_{\alpha }^{\mu } \mathfrak{I}_{r} ^{\beta }\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) \Biggr]+g_{p}^{\sigma -\gamma _{p}}(\rho ){}_{\alpha }^{\mu } \mathfrak{I}_{r} ^{\beta } \Biggl[(x-r)^{\vartheta }\prod _{i=1}^{n}g_{i}^{\gamma _{i}}(x) \Biggr] \\ &\quad {}- (\rho -r)^{\vartheta }g_{p}^{\sigma -\gamma _{p}}(\rho ) \Biggl[{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \prod_{i=1 }^{n}g_{i}^{ \gamma _{i}}(x) \Biggr]-{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[(x-r)^{\vartheta }\prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) \Biggr]. \end{aligned}$$
(10)
Multiplying (10) by \(\frac{1}{\varGamma (\beta )} (\frac{x ^{\alpha +\mu }-\rho ^{\alpha +\mu }}{\alpha +\mu } )^{\beta -1}\frac{ \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(\rho )}{\rho ^{1-\alpha -\mu }}\) and integrating the resultant identity with respect to ρ over \((r,x)\), we have
$$\begin{aligned} 0&\leq \Biggl[{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \prod_{i \neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) \Biggr]{}_{\alpha } ^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[(x-r)^{\vartheta }\prod_{i=1} ^{n}g_{i}^{\gamma _{i}}(x) \Biggr] \\ &\quad {}-{}_{\alpha }^{\mu } \mathfrak{I}_{r} ^{\beta } \Biggl[(x-r)^{\vartheta }\prod_{i\neq p}^{n}g_{i}^{\gamma_{i}}g_{p}^{\sigma }(x) \Biggr] \Biggl[{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \prod_{i=1 }^{n}g_{i}^{\gamma _{i}}(x) \Biggr], \end{aligned}$$
which completes the desired inequality (7). □

Corollary 1

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)benpositive continuous and decreasing on\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3,\ldots ,n\}\). Then, for R-L type fractional conformable integral (3), we have
$$\begin{aligned} \frac{{}_{\alpha }\mathfrak{I}_{r}^{\beta } [\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]}{{}_{\alpha }\mathfrak{I}_{r}^{\beta } [\prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) ]} \geq \frac{{}_{\alpha }\mathfrak{I}_{r}^{\beta } [(x-r)^{\vartheta }\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]}{{}_{\alpha }\mathfrak{I}_{r}^{\beta } [(x-r)^{\vartheta }\prod_{i=1} ^{n}g_{i}^{\gamma _{i}}(x) ]}, \end{aligned}$$
(11)
where\(\beta \in \mathbb{C}\), \(\alpha \in (0,1]\), and\(\Re (\beta )>0\).

Corollary 2

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)benpositive continuous and decreasing on\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3,\ldots ,n\}\). Then, for R-L fractional integral (5), we have
$$\begin{aligned} \frac{\mathfrak{I}_{r}^{\beta } [\prod_{i\neq p}^{n}g_{i}^{\gamma_{i}}g_{p}^{\sigma }(x) ]}{\mathfrak{I}_{r}^{\beta } [\prod_{i=1} ^{n}g_{i}^{\gamma _{i}}(x) ]}\geq \frac{\mathfrak{I}_{r}^{\beta } [(x-r)^{\vartheta }\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p} ^{\sigma }(x) ]}{\mathfrak{I}_{r}^{\beta } [(x-r)^{\vartheta }\prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) ]}, \end{aligned}$$
(12)
where\(\beta \in \mathbb{C}\)and\(\Re (\beta )>0\).

Remark 2

The inequality in Theorem 1 will reverse if \((g_{i})_{i=1,2,3, \ldots ,n}\) are increasing on the interval \([r,s]\). If we let \(\alpha =1\), \(\mu =0\), then Theorem 1 will lead to Theorem 3.1 [8]. Moreover, setting \(\mu =0\), \(\alpha =\beta =n=1\), \(x=s\), then Theorem 1 reduces to the well-known Theorem 3 [15].

Theorem 2

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)benpositive continuous and decreasing on\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3,\ldots ,n\}\). Then, for generalized fractional conformable integral (1), we have
$$\begin{aligned} &\frac{{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\lambda } [(x-r)^{\vartheta } { \prod_{i=1}^{n}} g_{i}^{\gamma _{i}}(x) ] +{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\beta } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\lambda } [(x-r)^{\vartheta } { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]}{{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\lambda } [(x-r)^{\vartheta }{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}(x) ]{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\beta } [{ \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]+ {}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\beta } [(x-r)^{\vartheta }{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}(x) ] {}_{\alpha }^{ \mu }\mathfrak{I}_{r}^{\lambda } [{ \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]} \\ &\quad \geq 1, \end{aligned}$$
(13)
where\(\beta ,\lambda \in \mathbb{C}\), \(\alpha \in (0,1]\), \(\mu \in \mathbb{R}\), \(\alpha +\mu \neq 0\), \(\Re (\beta )>0\), and\(\Re (\lambda )>0\).

Proof

Firstly, multiplying both sides of equation (10) by \(\frac{1}{\varGamma (\lambda )} (\frac{x^{\alpha +\mu }- \rho ^{\alpha +\mu }}{\alpha +\mu } )^{\lambda -1}\frac{\prod_{i=1}^{n}g_{i}^{\gamma _{i}}(\rho )}{\rho ^{1-\alpha -\mu }}\) and integrating the resultant identity with respect to ρ over \((r,x)\), we have
$$\begin{aligned} 0&\leq \int _{r}^{x} \int _{r}^{x}\frac{1}{\varGamma (\lambda )} \biggl( \frac{x ^{\alpha +\mu }-\rho ^{\alpha +\mu }}{\alpha +\mu } \biggr)^{\lambda -1}\frac{ \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(\rho )}{\rho ^{1-\alpha -\mu }} {}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\beta }(x,\rho ,t)\,dt\,d\rho \\ &= {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[\prod_{i\neq p} ^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) \Biggr]{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\lambda } \Biggl[(x-r)^{\vartheta }\prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) \Biggr] \\ &\quad {}+{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{ \lambda } \Biggl[\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) \Biggr] {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[(x-r)^{\vartheta } \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) \Biggr] \\ &\quad {}- {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[(x-r)^{\vartheta }\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) \Biggr]{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\lambda } \Biggl[ \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) \Biggr] \\ &\quad {}-{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{ \lambda } \Biggl[(x-r)^{\vartheta }\prod_{i\neq p}^{n}g_{i}^{\gamma_{i}}g_{p}^{\sigma }(x) \Biggr]{}_{\alpha }^{\mu }\mathfrak{I}_{r} ^{\beta } \Biggl[ \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) \Biggr]. \end{aligned}$$
(14)
Hence, dividing both sides of (14) by
$$ {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[(x-r)^{\vartheta } \prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) \Biggr]{}_{ \alpha }^{\mu }\mathfrak{I}_{r}^{\lambda } \Biggl[ \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) \Biggr]+{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{ \lambda } \Biggl[(x-r)^{\vartheta }\prod_{i\neq p}^{n}g_{i}^{\gamma_{i}}g_{p}^{\sigma }(x) \Biggr]{}_{\alpha }^{\mu }\mathfrak{I}_{r} ^{\beta } \Biggl[ \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) \Biggr], $$
we get the desired proof. □

Corollary 3

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)benpositive continuous and decreasing on\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3,\ldots ,n\}\). Then, for R-L type fractional conformable integral (3), we have
$$\begin{aligned} &\frac{{}_{\alpha }\mathfrak{I}_{r}^{\beta } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }\mathfrak{I}_{r}^{\lambda } [(x-r)^{\vartheta }{ \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ] +{}_{\alpha } \mathfrak{I}_{r}^{\beta } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }\mathfrak{I}_{r}^{\lambda } [(x-r)^{\vartheta }{ \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]}{{}_{\alpha } \mathfrak{I}_{r}^{\lambda } [(x-r)^{\vartheta }{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}(x) ]{}_{\alpha } \mathfrak{I}_{r}^{\beta } [{ \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]+ {}_{\alpha } \mathfrak{I}_{r}^{\beta } [(x-r)^{\vartheta }{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}(x) ] {}_{\alpha } \mathfrak{I}_{r}^{\lambda } [{ \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]} \\ &\quad \geq 1, \end{aligned}$$
(15)
where\(\beta ,\lambda \in \mathbb{C}\), \(\alpha \in (0,1]\), \(\Re ( \beta )>0\), and\(\Re (\lambda )>0\).

Corollary 4

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)benpositive continuous and decreasing on\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3,\ldots ,n\}\). Then, for R-L fractional integral (5), we have
$$\begin{aligned} &\frac{\mathfrak{I}_{r}^{\beta } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ] \mathfrak{I}_{r}^{\lambda } [(x-r)^{\vartheta }{ \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ] +\mathfrak{I}_{r}^{ \beta } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ] \mathfrak{I}_{r}^{\lambda } [(x-r)^{\vartheta }{ \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]}{\mathfrak{I}_{r}^{ \lambda } [(x-r)^{\vartheta }{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}(x) ]\mathfrak{I}_{r}^{ \beta } [{ \prod_{i=1}^{n}}g_{i}^{\gamma _{p}}(x) ]+ \mathfrak{I}_{r}^{ \beta } [(x-r)^{\vartheta }{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}(x) ] \mathfrak{I}_{r} ^{\lambda } [{ \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]} \\ &\quad \geq 1, \end{aligned}$$
(16)
where\(\beta ,\lambda \in \mathbb{C}\), \(\Re (\beta )>0\), and\(\Re (\lambda )>0\).

Remark 3

Applying Theorem 2 for \(\beta =\lambda \), we get Theorem 1. Again, the inequality will reverse if \((g_{i})_{i=1,2,3, \ldots ,n}\) are increasing functions on the interval \([r,s]\). If we let \(\alpha =1\), \(\mu =0\), then Theorem 1 will lead to Theorem 3.4 [8]. Moreover, setting \(\mu =0\), \(\alpha =\beta = \lambda =n=1\), \(x=s\), then again Theorem 1 reduces to the well-known Theorem 3 [15].

Theorem 3

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)andhbe positive continuous on the interval\([r,s]\)such thathis increasing and\((g_{i})_{i=1,2,3, \ldots ,n}\)are decreasing functions on\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3, \ldots ,n\}\). Then, for generalized fractional conformable integral (1), we have
$$\begin{aligned} \frac{{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } [\prod_{i \neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha } ^{\mu }\mathfrak{I}_{r}^{\beta } [h^{\vartheta }(x) \prod_{i=1} ^{n}g_{i}^{\gamma _{i}}(x) ]}{{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } [h^{\vartheta }(x)\prod_{i\neq p}^{n}g_{i}^{\gamma_{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }^{\mu }\mathfrak{I}_{r} ^{\beta } [ \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) ]}\geq 1, \end{aligned}$$
(17)
where\(\beta \in \mathbb{C}\), \(\alpha \in (0,1]\), \(\mu \in \mathbb{R}\), \(\alpha +\mu \neq 0\), and\(\Re (\beta )>0\).

Proof

Under the conditions stated in Theorem 3, we can write
$$\begin{aligned} \bigl(h^{\vartheta }(\rho )-h^{\vartheta }(t) \bigr) \bigl(g_{p} ^{\sigma -\gamma _{p}}(t)-g_{p}^{\sigma -\gamma _{p}}(\rho ) \bigr) \geq 0, \end{aligned}$$
(18)
where \(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\), \(t, \rho \in [r,x]\) and for any fixed \(p\in \{1,2,3,\ldots ,n\}\).
Define a function
$$\begin{aligned} {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta }(x,\rho ,t) &=\frac{1}{ \varGamma (\beta )} \biggl(\frac{x^{\alpha +\mu }-t^{\alpha +\mu }}{ \alpha +\mu } \biggr)^{\beta -1} \\ &\quad {}\times \frac{\prod_{i=1}^{n}g_{i}^{\gamma _{i}}(t)}{t^{1-\alpha - \mu }} \bigl(h^{\vartheta }(\rho )-h^{\vartheta }(t) \bigr) \bigl(g_{p}^{\sigma -\gamma _{p}}(t)-g_{p}^{\sigma -\gamma _{p}}( \rho ) \bigr). \end{aligned}$$
(19)
We observe that the above function satisfies all the assumptions stated in Theorem 3, and hence the function \({}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\beta }(x,\rho ,t)\) is positive for all \(t\in (r,x)\) (\(x>r\)). Therefore, integrating both sides of (19) with respect to t over \((r,x)\), we have
$$\begin{aligned} 0&\leq \int _{r}^{x}{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\beta }(x, \rho ,t)\,dt \\ &=\frac{1}{\varGamma (\beta )} \int _{r}^{x} \biggl(\frac{x^{ \alpha +\mu }-t^{\alpha +\mu }}{\alpha +\mu } \biggr)^{\beta -1} \\ &\quad {}\times \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(t) \bigl(h^{\vartheta }( \rho )-h^{\vartheta }(t) \bigr) \bigl(g_{p}^{\sigma -\gamma _{p}}(t)-g_{p}^{\sigma -\gamma _{p}}( \rho ) \bigr)\frac{dt}{t^{1-\alpha -\mu }} \\ &= \Biggl[h(\rho )^{\vartheta }{}_{\alpha }^{\mu } \mathfrak{I}_{r} ^{\beta }\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) \Biggr]+g_{p}^{\sigma -\gamma _{p}}(\rho ){}_{\alpha }^{\mu } \mathfrak{I}_{r} ^{\beta } \Biggl[h^{\vartheta }(x) \prod _{i=1}^{n}g_{i}^{\gamma _{i}}(x) \Biggr] \\ &\quad {}- h^{\vartheta }(\rho ) g_{p}^{\sigma -\gamma _{p}}(\rho ) \Biggl[{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \prod_{i=1 }^{n}g_{i}^{ \gamma _{i}}(x) \Biggr]-{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[h^{\vartheta }(x) \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) \Biggr]. \end{aligned}$$
(20)
Multiplying (20) by \(\frac{1}{\varGamma (\beta )} (\frac{x ^{\alpha +\mu }-\rho ^{\alpha +\mu }}{\alpha +\mu } )^{\beta -1}\frac{ \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(\rho )}{\rho ^{1-\alpha -\mu }}\) and integrating the resultant identity with respect to ρ over \((r,x)\), we have
$$\begin{aligned} 0&\leq \Biggl[{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \prod_{i \neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) \Biggr]{}_{\alpha } ^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[h^{\vartheta }(x) \prod_{i=1} ^{n}g_{i}^{\gamma _{i}}(x) \Biggr] \\ &\quad {}-{}_{\alpha }^{\mu } \mathfrak{I}_{r} ^{\beta } \Biggl[h^{\vartheta }(x)\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) \Biggr] \Biggl[{}_{\alpha }^{\mu }\mathfrak{I}_{r} ^{\beta }\prod_{i=1 }^{n}g_{i}^{\gamma _{i}}(x) \Biggr], \end{aligned}$$
which completes the desired inequality (17) of Theorem 3. □

Corollary 5

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)andhbe positive continuous on\([r,s]\)such thathis increasing and\((g_{i})_{i=1,2,3,\ldots ,n}\)are decreasing functions on the interval\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3, \ldots ,n\}\). Then, for R-L type fractional conformable integral (3), we have
$$\begin{aligned} \frac{{}_{\alpha }\mathfrak{I}_{r}^{\beta } [\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }\mathfrak{I}_{r}^{\beta } [h^{\vartheta }(x) \prod_{i=1}^{n}g_{i}^{\gamma_{i}}(x) ]}{{}_{\alpha }\mathfrak{I}_{r}^{\beta } [h^{ \vartheta }(x)\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ] {}_{\alpha }\mathfrak{I}_{r}^{\beta } [ \prod_{i=1}^{n}g_{i}^{ \gamma _{i}}(x) ]}\geq 1, \end{aligned}$$
(21)
where\(\beta \in \mathbb{C}\), \(\alpha \in (0,1]\), and\(\Re (\beta )>0\).

Corollary 6

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)andhbe positive continuous on\([r,s]\)such thathis increasing and\((g_{i})_{i=1,2,3,\ldots ,n}\)are decreasing functions on the interval\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3, \ldots ,n\}\). Then, for R-L fractional integral (5), we have
$$\begin{aligned} \frac{\mathfrak{I}_{r}^{\beta } [\prod_{i\neq p}^{n}g_{i}^{\gamma_{i}}g_{p}^{\sigma }(x) ]\mathfrak{I}_{r}^{\beta } [h^{ \vartheta }(x) \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) ]}{ \mathfrak{I}_{r}^{\beta } [h^{\vartheta }(x)\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]\mathfrak{I}_{r}^{\beta } [ \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) ]}\geq 1, \end{aligned}$$
(22)
where\(\beta \in \mathbb{C}\)and\(\Re (\beta )>0\).

Theorem 4

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)andhbe positive continuous functions on\([r,s]\)such thathis increasing and\((g_{i})_{i=1,2,3, \ldots ,n}\)are decreasing functions on the interval\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3,\ldots ,n\}\). Then, for generalized fractional conformable integral (1), we have
$$\begin{aligned} &\frac{{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\lambda } [h^{\vartheta }(x) { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]+{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\lambda } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } [h^{\vartheta }(x) { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]}{{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\beta } [h^{\vartheta }(x){ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\lambda } [ { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]+{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\lambda } [h^{\vartheta }(x){ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } [ \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) ]} \\ &\quad \geq 1, \end{aligned}$$
(23)
where\(\beta ,\lambda \in \mathbb{C}\), \(\alpha \in (0,1]\), \(\mu \in \mathbb{R}\), \(\alpha +\mu \neq 0\), \(\Re (\beta )>0\), and\(\Re (\lambda )>0\).

Proof

Multiplying (20) by \(\frac{1}{\varGamma (\lambda )} (\frac{x ^{\alpha +\mu }-\rho ^{\alpha +\mu }}{\alpha +\mu } )^{\lambda -1}\frac{ \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(\rho )}{\rho ^{1-\alpha -\mu }}\) then integrating with respect to ρ over \((r,x)\), we have
$$\begin{aligned} 0&\leq \Biggl[{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \prod_{i \neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) \Biggr]{}_{\alpha } ^{\mu }\mathfrak{I}_{r}^{\lambda } \Biggl[h^{\vartheta }(x) \prod_{i=1} ^{n}g_{i}^{\gamma _{i}}(x) \Biggr] \\ &\quad {}+ \Biggl[{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\lambda } \prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p} ^{\sigma }(x) \Biggr]{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[h^{\vartheta }(x) \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) \Biggr] \\ &\quad {}- {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[h^{\vartheta }(x) \prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) \Biggr] \Biggl[{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\lambda } \prod_{i=1 }^{n}g_{i}^{ \gamma _{i}}(x) \Biggr] \\ &\quad {} -{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\lambda } \Biggl[h^{\vartheta }(x)\prod_{i\neq p}^{n}g_{i}^{\gamma _{i}}g_{p} ^{\sigma }(x) \Biggr] \Biggl[{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{ \beta }\prod_{i=1 }^{n}g_{i}^{\gamma _{i}}(x) \Biggr]. \end{aligned}$$
After simplification, we get the desired result. □

Remark 4

Applying Theorem 4 for \(\beta =\lambda \), we get Theorem 3.

Corollary 7

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)andhbe positive continuous on\([r,s]\)such thathis increasing and\((g_{i})_{i=1,2,3,\ldots ,n}\)are decreasing functions on the interval\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3, \ldots ,n\}\). Then, for R-L type fractional conformable integral (3), we have
$$\begin{aligned} &\frac{{}_{\alpha }\mathfrak{I}_{r}^{\beta } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }\mathfrak{I}_{r}^{\lambda } [h^{\vartheta }(x) { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]+{}_{\alpha } \mathfrak{I}_{r}^{\lambda } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }\mathfrak{I}_{r}^{\beta } [h^{\vartheta }(x) { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]}{{}_{\alpha } \mathfrak{I}_{r}^{\beta } [h^{\vartheta }(x){ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }\mathfrak{I}_{r}^{\lambda } [ { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]+{}_{\alpha } \mathfrak{I}_{r}^{\lambda } [h^{\vartheta }(x){ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }\mathfrak{I}_{r}^{\beta } [ { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]} \\ &\quad \geq 1, \end{aligned}$$
(24)
where\(\beta ,\lambda \in \mathbb{C}\), \(\alpha \in (0,1]\), \(\Re ( \beta )>0\), and\(\Re (\lambda )>0\).

Corollary 8

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)andhbe positive continuous on\([r,s]\)such thathis increasing and\((g_{i})_{i=1,2,3,\ldots ,n}\)are decreasing on the interval\([r,s]\). Let\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\)for any fixed\(p\in \{1,2,3,\ldots ,n\}\). Then, for R-L fractional integral (5), we have
$$\begin{aligned} &\frac{\mathfrak{I}_{r}^{\beta } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ] \mathfrak{I}_{r}^{\lambda } [h^{\vartheta }(x) \prod_{i=1}^{n}g_{i}^{\gamma _{i}}(x) ]+\mathfrak{I}_{r}^{\lambda } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ] \mathfrak{I}_{r}^{\beta } [h^{\vartheta }(x) { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]}{\mathfrak{I}_{r}^{ \beta } [h^{\vartheta }(x){ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ] \mathfrak{I}_{r}^{\lambda } [ { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]+\mathfrak{I}_{r}^{ \lambda } [h^{\vartheta }(x){ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ] \mathfrak{I}_{r}^{\beta } [ { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]} \\ &\quad \geq 1, \end{aligned}$$
(25)
where\(\beta ,\lambda \in \mathbb{C}\), \(\Re (\beta )>0\), and\(\Re (\lambda )>0\).

Theorem 5

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)andhbe positive continuous on\([r,s]\), and let for any fixed\(p\in \{1,2,3,\ldots ,n\}\),
$$ \bigl(g_{p}^{\vartheta }(t)h^{\vartheta }(\rho )-g_{p}^{\vartheta }( \rho )h^{\vartheta }(t) \bigr) \bigl(g_{p}^{\sigma -\gamma _{p}}(t) -g_{p}^{\sigma -\gamma _{p}}(\rho ) \bigr)\geq 0, $$
\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\), then we have
$$\begin{aligned} \frac{{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } [{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma +\vartheta }(x) ] {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } [h^{\vartheta }(x) { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]}{{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\beta } [h^{\vartheta }(x){ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma }(x) ]{}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } [g_{p}^{\vartheta } { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) ]}\geq 1, \end{aligned}$$
(26)
where\(\beta \in \mathbb{C}\), \(\alpha \in (0,1]\), \(\mu \in \mathbb{R}\), \(\alpha +\mu \neq 0\), and\(\Re (\beta )>0\).

Proof

The proof of Theorem 5 is similar to the proof of Theorem 3 if we replace \(h^{\vartheta }(\rho )-h^{\vartheta }(t)\) by \((g_{p}^{\vartheta }(t)h^{\vartheta }(\rho )-g_{p}^{\vartheta }( \rho )h^{\vartheta }(t) )\). □

Theorem 6

Let\((g_{i})_{i=1,2,3,\ldots ,n}\)andhbe positive continuous functions on\([r,s]\), and let for any fixed\(p\in \{1,2,3,\ldots ,n\}\),
$$ \bigl(g_{p}^{\vartheta }(t)h^{\vartheta }(\rho )-g_{p}^{\vartheta }( \rho )h^{\vartheta }(t) \bigr) \bigl(g_{p}^{\sigma -\gamma _{p}}(t) -g_{p}^{\sigma -\gamma _{p}}(\rho ) \bigr)\geq 0, $$
\(r< x\leq s\), \(\vartheta >0\), \(\sigma \geq \gamma _{p}>0\), then we have
$$\begin{aligned} &\Biggl({}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma +\vartheta }(x) \Biggr] {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\lambda } \Biggl[h^{\vartheta }(x) { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) \Biggr] \\ &\qquad {}+{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\lambda } \Biggl[{ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma +\vartheta }(x) \Biggr] {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[h^{\vartheta }(x) { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) \Biggr]\Biggr) \\ &\qquad {}\Big/\Biggl({}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\beta } \Biggl[h^{\vartheta }(x){ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma +\vartheta }(x) \Biggr] {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\lambda } \Biggl[g_{p}^{\vartheta }{ \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) \Biggr] \\ &\qquad {}+{}_{\alpha }^{\mu } \mathfrak{I}_{r}^{\lambda } \Biggl[h^{\vartheta }(x){ \prod_{i\neq p}^{n}}g_{i}^{\gamma _{i}}g_{p}^{\sigma +\vartheta }(x) \Biggr] {}_{\alpha }^{\mu }\mathfrak{I}_{r}^{\beta } \Biggl[g_{p}^{\vartheta } { \prod_{i=1}^{n}}g_{i}^{\gamma _{i}}(x) \Biggr]\Biggr) \\ &\quad \geq 1, \end{aligned}$$
(27)
where\(\beta ,\lambda \in \mathbb{C}\), \(\alpha \in (0,1]\), \(\mu \in \mathbb{R}\), \(\alpha +\mu \neq 0\), \(\Re (\beta )>0\), and\(\Re (\lambda )>0\).

Proof

The proof of Theorem 6 runs parallel as to the proof of Theorem 4 if we replace \(h^{\vartheta }(\rho )-h^{\vartheta }(t)\) by \((g_{p}^{\vartheta }(t)h^{\vartheta }(\rho )-g_{p}^{\vartheta }( \rho )h^{\vartheta }(t) )\). □

Remark 5

In a similar way, we can get the inequalities for the generalized right FCIO (2) and special cases for integrals (4) and (6).

Notes

Acknowledgements

The authors G. Rahman and A. Khan thanks to the Higher Education Commission of Pakistan for the support under the Start-Up Research Grant Project.

Availability of data and materials

Not applicable.

Authors’ contributions

The authors have contributed equally to this manuscript. They read and approved the final manuscript.

Funding

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015).  https://doi.org/10.1016/j.cam.2014.10.016 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Abdeljawad, T.: A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. J. Inequal. Appl. 2017, 130 (2017).  https://doi.org/10.1186/s13660-017-1400-5 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Abdeljawad, T.: Fractional operators with exponential kernels and a Lyapunov type inequality. Adv. Differ. Equ. 2017, 313 (2017).  https://doi.org/10.1186/s13662-017-1285-0 MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Abdeljawad, T., Agarwal, R.P., Alzabut, J., Jarad, F., ÖZbekler, A.: Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives. J. Inequal. Appl. 2018, 143 (2018).  https://doi.org/10.1186/s13660-018-1731-x MathSciNetCrossRefGoogle Scholar
  5. 5.
    Abdeljawad, T., Alzabut, J., Jarad, F.: A generalized Lyapunov-type inequality in the frame of conformable derivatives. A generalized Lyapunov-type inequality in the frame of conformable derivatives. Adv. Differ. Equ. 2017, 321 (2017).  https://doi.org/10.1186/s13662-017-1383-z zbMATHCrossRefGoogle Scholar
  6. 6.
    Adjabi, Y., Jarad, F., Abdeljawad, T.: On generalized fractional operators and a Gronwall type inequality with applications. Filomat 31(17), 5457–5473 (2017).  https://doi.org/10.2298/FIL1717457A MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dahmani, Z.: New inequalities in fractional integrals. Int. J. Nonlinear Sci. 9(4), 493–497 (2010) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dahmani, Z.: New classes of integral inequalities of fractional order. Matematiche 69(1), 237–247 (2014).  https://doi.org/10.4418/2014.69.1.18 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dahmani, Z., Tabharit, L.: On weighted Gruss type inequalities via fractional integration. J. Adv. Res. Pure Math. 2, 31–38 (2010) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, 247 (2017) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264(65), 65–70 (2014) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Khan, T.U., Khan, M.A.: Generalized conformable fractional integral operators. J. Comput. Appl. Math. 346, 378–389 (2019).  https://doi.org/10.1016/j.cam.2018.07.018 MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38, 1191–1204 (2001) MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kiryakova, V.: Generalized Fractional Calculus and Applications. Pitman Res. Notes Math. Ser., vol. 301. Longman, New York (1994) zbMATHGoogle Scholar
  15. 15.
    Liu, W., Ngǒ, Q.A., Huy, V.N.: Several interesting integral inequalities. J. Math. Inequal. 3(2), 201–212 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Nisar, K.S., Qi, F., Rahman, G., Mubeen, S., Arshad, M.: Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric k-function. J. Inequal. Appl. 2018, 135 (2018) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nisar, K.S., Rahman, G., Choi, V., Mubeen, S., Arshad, M.: Certain Gronwall type inequalities associated with Riemann–Liouville k- and Hadamard k-fractional derivatives and their applications. East Asian Math. J. 34(3), 249–263 (2018) Google Scholar
  18. 18.
    Nisar, K.S., Tassaddiq, A., Rahman, G., Khan, A.: Some inequalities via fractional conformable integral operators. J. Inequal. Appl. 2019, 217 (2019) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ntouyas, K.S., Agarwal, P., Tariboon, J.: On Polya–Szego and Chebyshev types inequalities involving the Riemann–Liouville fractional integral operators. J. Math. Inequal. 10(2), 491–504 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999) zbMATHGoogle Scholar
  21. 21.
    Qi, F., Rahman, G., Hussain, S.M., Du, W.S., Nisar, K.S.: Some inequalities of Čebyšev type for conformable k-fractional integral operators. Symmetry 10, 614 (2018).  https://doi.org/10.3390/sym10110614 CrossRefGoogle Scholar
  22. 22.
    Rahman, G., Khan, A., Abdeljawad, T., Nisar, K.S.: The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. 2019, 287 (2019).  https://doi.org/10.1186/s13662-019-2229-7 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rahman, G., Nisar, K.S., Mubeen, S., Choi, J.: Certain inequalities involving the \((k,\rho )\)-fractional integral operator. Far East J. Math. Sci.: FJMS 103(11), 1879–1888 (2018) Google Scholar
  24. 24.
    Rahman, G., Nisar, K.S., Qi, F.: Some new inequalities of the Gruss type for conformable fractional integrals. AIMS Mathematics 3(4), 575–583 (2018) CrossRefGoogle Scholar
  25. 25.
    Rahman, G., Ullah, Z., Khan, A., Set, E., Nisar, K.S.: Certain Chebyshev type inequalities involving fractional conformable integral operators. Mathematics 7, 364 (2019).  https://doi.org/10.3390/math7040364 CrossRefGoogle Scholar
  26. 26.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Reading (1993) zbMATHGoogle Scholar
  27. 27.
    Sarikaya, M.Z., Dahmani, Z., Kiris, M.E., Ahmad, F.: \((k, s)\)-Riemann–Liouville fractional integral and applications. Hacet. J. Math. Stat. 45(1), 77–89 (2016) MathSciNetzbMATHGoogle Scholar
  28. 28.
    Set, E., Tomar, M., Sarikaya, M.Z.: On generalized Grüss type inequalities for k-fractional integrals. Appl. Math. Comput. 269, 29–34 (2015) MathSciNetzbMATHGoogle Scholar
  29. 29.
    Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012) zbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Kottakkaran Sooppy Nisar
    • 1
    Email author
  • Gauhar Rahman
    • 2
  • Aftab Khan
    • 2
  1. 1.Department of Mathematics, College of Arts and SciencesPrince Sattam bin Abdulaziz UniversityWadi AldawaserSaudi Arabia
  2. 2.Department of MathematicsShaheed Benazir Bhutto University, SheringalUpper DirPakistan

Personalised recommendations