Advertisement

Advances in Difference Equations

, 2019:228 | Cite as

Bifurcation analysis of an e-SEIARS model with multiple delays for point-to-group worm propagation

  • Zizhen ZhangEmail author
  • Tao Zhao
Open Access
Research
  • 131 Downloads

Abstract

In this paper, by taking two important network environment factors (namely point-to-group worm propagation and benign worms) into consideration, a mathematical model with multiple delays to model the worm prevalence is presented. Sufficient conditions for the local stability of the unique endemic equilibrium and the existence of a Hopf bifurcation are demonstrated by choosing the different combinations of the three delays and analyzing the associated characteristic equation. Directly afterward, the stability and direction of the bifurcated periodic solutions are investigated by using center manifold theorem and the normal form theory. Finally, special attention is paid to some numerical simulations in order to verify the obtained theoretical results.

Keywords

Delays Hopf bifurcation Stability Point-to-group propagation Periodic solutions 

1 Introduction

Over the years coupled with the fast development of communication technology and computer network applications, the network security has become an important challenge to the internet [1]. Specially, many computer worms have come into the internet frequently since the first known worm, called Morris, appeared in 1988. Computer worms are self-replicating programs created to carry out activities, which can quickly infect millions of electronic devices (computers, smartphones, etc.) without consent of their owners, and they have brought about huge economic losses and have had high social impact [2, 3]. Therefore, it is urgent to analyze the spreading law and control of computer worms in order to lessen their potential threat. Based on a newfangled observation that the spread of worms among computers is closely similar to the transmission of the infectious disease among a population, many epidemic models, such as SIRS model [4], SEIR model [5], SEIRS [2, 6, 7] model, SEIS-V model [8], SEIQR model [9] and SEIRS-V model [10, 11, 12], have been employed to analyze and describe the spread of computer worms in the internet.

As stated in the literature [13], the “point-to-group” (P2G), is extensively exists in the real world, especially in information sharing network. And its typical characteristics is that the group members in such network environment can receive the message or file from the source simultaneously. Moreover, the information exchange in the same group is more frequent and more trustworthy, which makes it easier for computer viruses to propagate in the same group. Although there are some mathematical models which can depict the spread of computer viruses in the internet, however, the common problem of the above models is that they are not suitable for modeling the spread of computer viruses in point-to-group networks. In view of this fact, and based on the SIRA computer virus propagation model in the literature [14] Wang et al. [15] proposed the following e-SEIAR model with point-to-group worm propagation:
$$ \textstyle\begin{cases} \frac{dS(t)}{dt} =\mu N-\beta _{1} S(t)E(t)-\beta _{2}S(t)A(t)-(\mu + \varepsilon ) S(t), \\ \frac{dE(t)}{dt} =\beta _{1}S(t)E(t)-(\mu +\alpha +\rho )E(t), \\ \frac{dI(t)}{dt} =\alpha E(t)-\mu I(t)-\beta _{2}I(t)A(t), \\ \frac{dA(t)}{dt} =\beta _{2}S(t)A(t)+\beta _{2}I(t)A(t)-(\mu +\gamma )A(t), \\ \frac{dR(t)}{dt} =\gamma A(t)+\rho E(t)+\varepsilon S(t)-\mu R(t), \end{cases} $$
(1)
where \(S(t)\), \(E(t)\), \(I(t)\), \(A(t)\) and \(R(t)\) represent the numbers of susceptible, exposed, infective, benign worm and recovered hosts at time t, respectively. Namely, the total hosts are partitioned into five groups: S hosts, E hosts, I hosts, A hosts and R hosts. More parameters are listed in Table 1. Wang et al. [15] studied the local and global stability of system (1).
Table 1

Parameters and their meanings in this paper

Parameter

Description

μ

The replacement rate of old hosts

N

The total number of hosts

\(\beta _{1}\)

The infection rate of worms

\(\beta _{2}\)

The infection rate of benign worms

α

The transition rate from E to I

γ

The transition rate from A to R

ρ

The transition rate from E to R

ε

The transition rate from S to R

η

The transition rate from R to S

Obviously, Wang et al. [15] assume that the recovered hosts in system (1) have permanent immunization, which is not consistent with real world. In addition, there is usually a latent period from E hosts to I hosts. Similarly, it also needs a period for anti-virus software to clean the worms in E hosts and A hosts. On the other hand, delay differential equations show more complex dynamics compared with ordinary differential equations [16, 17, 18]. For example, there some work about delayed predator–prey models in [19, 20, 21, 22], neural network models with delays in [23, 24, 25, 26] and delayed epidemic models in [27, 28, 29, 30]. Specially, there have been some work about the delayed computer virus models. Zhao and Bi studied the Hopf bifurcation of a delayed SEIR computer virus model with limited anti-virus ability by regarding the latent delay as the bifurcation parameter [31]. In [32], Zhang and Wang investigated the Hopf bifurcation of a delayed SLBQRS model by choosing the time delay due to the period that anti-virus software uses to clean viruses as the bifurcation parameter and derived the explicit formulas determining the direction and stability of the Hopf bifurcation by using the center manifold theorem and the normal form theory. In [33], Ren et al. analyzed the Hopf bifurcation of a delayed SIRS computer virus model by taking the time delay due to the temporary immunization period of the recovered hosts. Zhao et al. studied the Hopf bifurcation of a delayed SLBS computer virus model by using the different combinations of the two delays as the bifurcation parameter [34]. All the work about the delayed dynamical systems shows that time delays have important effect on the stability of the systems. Therefore, based on the defects in the model proposed by Wang et al. [15] and inspired by the work about the delayed computer virus models in [3, 5, 6, 18, 31, 32, 33, 34], we investigate a delayed e-SEIARS model:
$$ \textstyle\begin{cases} \frac{dS(t)}{dt} =\mu N-\beta _{1} S(t)E(t)-\beta _{2}S(t)A(t)-(\mu + \varepsilon ) S(t)+\eta R(t-\tau _{3}), \\ \frac{dE(t)}{dt} =\beta _{1}S(t)E(t)-\mu E(t)-\alpha E(t-\tau _{1})- \rho E(t-\tau _{2}), \\ \frac{dI(t)}{dt} =\alpha E(t-\tau _{1})-\mu I(t)-\beta _{2}I(t)A(t), \\ \frac{dA(t)}{dt} =\beta _{2}S(t)A(t)+\beta _{2}I(t)A(t)-\mu A(t)- \gamma A(t-\tau _{2}), \\ \frac{dR(t)}{dt} =\gamma A(t-\tau _{2})+\rho E(t-\tau _{2})+\varepsilon S(t)-\mu R(t)-\eta R(t-\tau _{3}), \end{cases} $$
(2)
where \(\tau _{1}\) is the latent period delay of the exposed nodes; \(\tau _{2}\) is the delay due to the period that the anti-virus software uses to clean the worm and \(\tau _{3}\) is the temporary immunization period of the recovered nodes. The dynamical transfer is depicted in Fig. 1.
Figure 1

Schematic diagramfor the flowof worms inthe network

The rest of paper is organized as follows. In Sect. 2, we analyze local stability of the endemic equilibrium and existence of Hopf bifurcation by taking different combinations of the three delays as bifurcation parameters. In Sect. 3, the properties of the Hopf bifurcation are investigated with aid of the center manifold theory and the normal form method. Numerical simulations are performed in Sect. 4 in order to illustrate the theoretical predictions. Finally, we end our paper with a concluding remark.

2 Local stability and Hopf bifurcation analysis

Straightforward computation shows that if the condition (\(C_{1}\)) \(\beta _{1}(\mu +\gamma )>\beta _{2}(\mu +\alpha +\rho )\), then system (2) has an endemic equilibrium \(D_{*}(S_{*}, E_{*}, I _{*}, A_{*}, R_{*})\), where
$$\begin{aligned}& S_{*} = \frac{\mu +\alpha +\rho }{\beta _{1}}, \\& E_{*} = a_{1}+a_{2}A_{*}, \\& I_{*} = \frac{\beta _{1}(\mu +\gamma )-\beta _{2}(\mu +\alpha +\rho )}{ \beta _{1}\beta _{2}}, \\& A_{*} = \frac{\mu N-a_{1}(\mu +\alpha +\rho )-(\mu +\varepsilon )S _{*}+b_{1}\eta }{(a_{2}+\beta _{2}/\beta _{1})(\mu +\alpha +\rho )-b _{2}\eta }, \\& R_{*} = b_{1}+b_{2}A_{*}, \end{aligned}$$
with
$$\begin{aligned}& a_{1} = \frac{\mu }{\alpha }I_{*},\qquad a_{2}= \frac{\beta _{2}}{\alpha }I _{*}, \\& b_{1} = \frac{\varepsilon (\mu +\alpha +\rho )}{\beta _{1}(\mu +\eta )}+\frac{ \mu \rho I_{*}}{\alpha (\mu +\eta )}, \\& b_{2} = \frac{\gamma }{\mu +\eta }+\frac{\beta _{2}\rho I_{*}}{\alpha (\mu +\eta )}. \end{aligned}$$
The characteristic equation of the linear section of system (2) at \(D_{*}(S_{*}, E_{*}, I_{*}, A_{*}, R_{*})\) is
$$\begin{aligned}& \lambda ^{5}+M_{4}\lambda ^{4} + M_{3} \lambda ^{3}+M_{2}\lambda ^{2}+M _{1} \lambda +M_{0} \\& \quad {} + \bigl(N_{4}\lambda ^{4}+N_{3}\lambda ^{3}+N_{2}\lambda ^{2}+N_{1}\lambda +N _{0}\bigr)e^{-\lambda \tau _{1}} \\& \quad {} + \bigl(P_{4}\lambda ^{4}+P_{3}\lambda ^{3}+P_{2}\lambda ^{2}+P_{1}\lambda +P _{0}\bigr)e^{-\lambda \tau _{2}} \\& \quad {} + \bigl(Q_{4}\lambda ^{4}+Q_{3}\lambda ^{3}+Q_{2}\lambda ^{2}+Q_{1}\lambda +Q _{0}\bigr)e^{-\lambda \tau _{3}} \\& \quad {} + \bigl(R_{3}\lambda ^{3}+R_{2}\lambda ^{2}+R_{1}\lambda +R_{0}\bigr)e^{-\lambda (\tau _{1}+\tau _{2})} \\& \quad {} + \bigl(S_{3}\lambda ^{3}+S_{2}\lambda ^{2}+S_{1}\lambda +S_{0}\bigr)e^{-\lambda (\tau _{1}+\tau _{3})} \\& \quad {} + \bigl(T_{3}\lambda ^{3}+T_{2}\lambda ^{2}+T_{1}\lambda +T_{0}\bigr)e^{-\lambda (\tau _{2}+\tau _{3})} \\& \quad {} + \bigl(U_{3}\lambda ^{3}+U_{2}\lambda ^{2}+U_{1}\lambda +U_{0}\bigr)e^{-2\lambda \tau _{2}} \\& \quad {} + \bigl(V_{3}\lambda ^{3}+V_{2}\lambda ^{2}+V_{1}\lambda +V_{0}\bigr)e^{-2\lambda \tau _{3}} \\& \quad {} + \bigl(W_{2}\lambda ^{2}+W_{1}\lambda +W_{0}\bigr)e^{-\lambda (\tau _{1}+\tau _{2}+\tau _{3})} \\& \quad {} + \bigl(X_{2}\lambda ^{2}+X_{1}\lambda +X_{0}\bigr)e^{-\lambda (\tau _{1}+2\tau _{3})} \\& \quad {} + \bigl(Y_{2}\lambda ^{2}+Y_{1}\lambda +Y_{0}\bigr)e^{-\lambda (\tau _{2}+2\tau _{3})} \\& \quad {} + \bigl(Z_{2}\lambda ^{2}+Z_{1}\lambda +Z_{0}\bigr)e^{-\lambda (2\tau _{2}+\tau _{3})} \\& \quad {} + (L_{1}\lambda +L_{0})e^{-\lambda (\tau _{1}+\tau _{2}+2\tau _{3})}+(E _{1}\lambda +E_{0})e^{-2\lambda (\tau _{2}+\tau _{3})}=0, \end{aligned}$$
(3)
where
$$\begin{aligned}& M_{0} = m_{55}(m_{34}m_{43}-m_{33}m_{44}) (m_{11}m_{22}-m_{12}m_{21}), \\& \begin{aligned} M_{1} &= (m_{11}m_{22}-m_{12}m_{21}) (m_{33}m_{44}+m_{33}m_{55}+m_{44}m _{55}) \\ &\quad {}+(m_{11}+m_{22})m_{33}m_{44}m_{55}+m_{12}m_{21}m_{34}m_{43} \\ &\quad {} -m_{34}m_{43}(m_{11}m_{22}+m_{11}m_{55}+m_{22}m_{55}), \end{aligned} \\& \begin{aligned} M_{2} &= (m_{12}m_{21}-m_{11}m_{22}) (m_{33}+m_{44}+m_{55})-m_{33}m_{44}m _{55} \\ &\quad {}+m_{34}m_{43}(m_{11}+m_{22}+m_{55}) \\ &\quad {} -(m_{11}+m_{22}) (m_{33}m_{44}+m_{33}m_{55}+m_{44}m_{55}), \end{aligned} \\& \begin{aligned} M_{3} &= m_{33}m_{44}+m_{33}m_{55}+m_{44}m_{55}+m_{11}m_{22} \\ &\quad {}-m_{12}m _{21}(m_{11}+m_{22}) (m_{33}+m_{44}+m_{55})-m_{34}m_{43}, \end{aligned} \\& M_{4} = -(m_{11}+m_{22}+m_{33}+m_{44}+m_{55}), \\& N_{0} = m_{55}(m_{14}m_{21}m_{43}n_{32}+m_{11}m_{34}m_{43}n_{22}-m _{11}m_{33}m_{44}n_{22}), \\& \begin{aligned} N_{1} &= n_{22}\bigl[m_{55}(m_{11}m_{33}+m_{11}m_{44}+m_{33}m_{44})+m_{11}m _{33}m_{44}\bigr] \\ &\quad {}-m_{14}m_{21}m_{43}n_{32}-m_{34}m_{43}n_{22}(m_{11}+m_{55}), \end{aligned} \\& N_{2} = n_{22}\bigl[m_{34}m_{43}-m_{55}(m_{11}+m_{33}+m_{44})-m_{11}m_{33}-m _{11}m_{44}-m_{33}m_{44}\bigr], \\& N_{3} = n_{22}(m_{11}+m_{33}+m_{44}+m_{55}), \qquad N_{4}=-n_{22}, \\& P_{0} = m_{11}m_{55}p_{22}(m_{34}m_{43}-m_{33}m_{44})+m_{33}m_{55}p _{44}(m_{12}m_{21}-m_{11}m_{22}), \\& \begin{aligned} P_{1} &= (m_{33}+m_{55}) (m_{11}m_{22}p_{44}+m_{11}m_{44}p_{22}-m_{12}m _{21}p_{44}) \\ &\quad {}+m_{33}m_{55}\bigl[p_{22}(m_{11}+m_{44})+p_{44}(m_{11}+m_{22}) \bigr] \\ &\quad {}-m_{34}m_{43}p_{22}(m_{11}+m_{55}), \end{aligned} \\& \begin{aligned} P_{2} &= p_{22}\bigl[m_{34}m_{43}-m_{11}m_{44}-m_{33}m_{55}-(m_{11}+m_{44}) (m _{33}+m_{55})\bigr] \\ &\quad {}+p_{44}\bigl[m_{12}m_{21}-m_{11}m_{22}-m_{33}m_{55}-(m_{11}+m_{22}) (m _{33}+m_{55})\bigr], \end{aligned} \\& P_{3} = p_{22}(m_{11}+m_{33}+m_{44}+m_{55})+p_{44}(m_{11}+m_{22}+m _{33}+m_{55}), \\& P_{4} = -(p_{22}+p_{44}), \\& Q_{0} = q_{55}(m_{12}m_{21}-m_{11}m_{22}) (m_{33}m_{44}-m_{34}m_{43})-m _{22}m_{33}m_{44}m_{55}q_{15}, \\& \begin{aligned} Q_{1} &= q_{15}\bigl[m_{22}m_{33}(m_{44}+m_{55})+m_{44}m_{55}(m_{22}+m_{33}) \bigr] \\ &\quad {}+q_{55}\bigl[(m_{11}m_{22}-m_{12}m_{21}) (m_{33}+m_{44})+(m_{33}m_{44}-m _{34}m_{43}) (m_{11}+m_{22})\bigr], \end{aligned} \\& \begin{aligned} Q_{2} &= q_{55}\bigl[m_{12}m_{21}+m_{34}m_{43}-m_{11}m_{22}-m_{33}m_{44}-(m _{11}+m_{22}) (m_{33}+m_{44})\bigr] \\ &\quad {}-q_{15}\bigl[m_{22}m_{33}+m_{44}m_{55}+(m_{22}+m_{33}) (m_{44}+m_{55})\bigr], \end{aligned} \\& Q_{3} = q_{15}(m_{22}+m_{33}+m_{44}+m_{55})+q_{55}(m_{11}+m_{22}+m _{33}+m_{44}), \\& Q_{4} = -(q_{15}+q_{55}),\qquad R_{0}=-m_{11}m_{33}m_{55}n_{22}p_{44}, \\& R_{1} = p_{44}n_{22}(m_{11}m_{33}+m_{11}m_{55}+m_{33}m_{55}), \\& R_{2} = -p_{44}n_{22}(m_{11}+m_{33}+m_{55}), \qquad R_{3}=p_{44}n_{22}, \\& S_{0} = q_{55}(m_{14}m_{21}m_{43}n_{32}-m_{11}m_{33}m_{44}n_{22})-m _{33}m_{44}m_{55}n_{22}q_{15}, \\& S_{1} = n_{22}\bigl[q_{15}(m_{33}m_{44}+m_{33}m_{55}+m_{44}m_{55})+q_{55}(m _{11}m_{33}+m_{11}m_{44}+m_{33}m_{44}) \bigr], \\& S_{2} = -n_{22}\bigl[q_{15}(m_{33}+m_{44}+m_{55})+q_{55}(m_{11}+m_{33}+m _{44})\bigr],\qquad S_{3}=n_{22}(q_{15}+q_{55}), \\& \begin{aligned} T_{0} &= m_{33}q_{55}(m_{12}m_{21}p_{44}-m_{11}m_{22}p_{44}-m_{11}m _{44}p_{22}) \\ &\quad {}-m_{33}m_{55}q_{15}(m_{22}p_{44}+m_{44}p_{22}), \end{aligned} \\& \begin{aligned} T_{1} &= q_{15}\bigl[p_{22}(m_{33}m_{44}+m_{33}m_{55}+m_{44}m_{55}) \\ &\quad {}+p_{44}(m_{22}m_{33}+m_{22}m_{55}+m_{33}m_{55}) \bigr] \\ &\quad {} +q_{55}\bigl[p_{22}(m_{11}m_{33}+m_{11}m_{44}+m_{33}m_{44}) \\ &\quad {} +p_{44}(m_{11}m_{22}+m_{11}m_{33}+m_{22}m_{33}-m_{12}m_{21}) \bigr], \end{aligned} \\& \begin{aligned} T_{2} &= -q_{15}\bigl[p_{22}(m_{33}+m_{44}+m_{55})+p_{44}(m_{22}+m_{33}+m _{55})\bigr] \\ &\quad {}-q_{55}\bigl[p_{22}(m_{11}+m_{33}+m_{44})+p_{44}(m_{11}+m_{22}+m_{33}) \bigr], \end{aligned} \\& T_{3} = (q_{15}+q_{55}) (p_{22}+p_{44}), \\& U_{0} = -m_{11}m_{33}m_{55}p_{22}p_{44}, \\& U_{1} = p_{22}p_{44}(m_{11}m_{33}+m_{11}m_{55}+m_{33}m_{55}), \\& U_{2} = -p_{22}p_{44}(m_{11}+m_{33}+m_{55}), \qquad U_{3}=p_{22}p_{44}, \\& V_{0} = -m_{22}m_{33}m_{44}q_{15}q_{55}, \\& V_{1} = q_{15}q_{55}(m_{22}m_{33}+m_{22}m_{44}+m_{33}m_{44}), \\& V_{2} = -q_{15}q_{55}(m_{22}+m_{33}+m_{44}), \qquad V_{3}=q_{15}q_{55}, \\& W_{0} = -m_{33}n_{22}p_{44}(m_{55}q_{15}+m_{11}q_{55}), \\& W_{1} = n_{22}p_{44}\bigl[q_{15}(m_{33}+m_{55})+q_{55}(m_{11}+m_{33}) \bigr], \\& W_{2} = -n_{22}p_{44}(q_{15}+q_{55}), \\& X_{0} = -m_{33}m_{44}n_{22}q_{15}q_{55}, \qquad X_{1}=n_{22}q_{15}q_{55}(m _{33}+m_{44}),\qquad X_{2}=-n_{22}q_{15}q_{55}, \\& Y_{0} = -m_{33}q_{15}q_{55}(m_{22}p_{44}+m_{44}p_{22}), \\& Y_{1} = q_{15}q_{55}\bigl[p_{22}(m_{33}+m_{44})+p_{44}(m_{22}+m_{33}) \bigr], \\& Y_{2} = -q_{15}q_{55}(p_{22}+p_{44}), \\& Z_{0} = -m_{33}p_{22}p_{44}(m_{11}q_{55}+m_{33}q_{15}), \\& Z_{1} = p_{22}p_{44}\bigl[q_{55}(m_{11}+m_{33})+q_{15}(m_{33}+m_{55}) \bigr], \\& Z_{2} = -p_{22}p_{44}(q_{15}+q_{55}), \\& L_{0} = -m_{33}n_{22}p_{44}q_{15}q_{55}, \qquad L_{1}=n_{22}p_{44}q_{15}q _{55}, \\& E_{0} = -m_{33}p_{22}p_{44}q_{15}q_{55}, \qquad E_{1}=p_{22}p_{44}q_{15}q _{55}, \end{aligned}$$
and
$$\begin{aligned}& m_{11} = -(\beta _{1}E_{*}+\beta _{2}A_{*}+\mu +\varepsilon ),\qquad m_{12}=- \beta _{1}S_{*},\qquad m_{14}=-\beta _{2}S_{*},\qquad q_{15}=\eta , \\& m_{21} = \beta _{1}S_{*},\qquad m_{22}=-\mu , \qquad n_{22}=-\alpha ,\qquad p_{22}=- \rho , \\& m_{33} = -(\mu +\beta _{2}A_{*}),\qquad m_{34}=-\beta _{2}I_{*},\qquad n_{32}= \alpha , \\& m_{41} = \beta _{2}A_{*},\qquad m_{43}= \beta _{2}A_{*},\qquad m_{44}=\beta _{2}(S _{*}+I_{*})-\mu ,\qquad p_{44}=- \gamma , \\& m_{51} = \varepsilon ,\qquad m_{55}-\mu ,\qquad p_{52}=\rho ,\qquad p_{54}=\gamma ,\qquad q _{55}=- \eta . \end{aligned}$$
Case 1. \(\tau _{1}=\tau _{2}=\tau _{3}=0\), Eq. (3) becomes
$$ \lambda ^{5}+M_{14}\lambda ^{4}+M_{13}\lambda ^{3}+M_{12}\lambda ^{2}+M _{11}\lambda +M_{10}=0, $$
(4)
where
$$\begin{aligned}& \begin{aligned} M_{10} &= M_{0}+N_{0}+P_{0}+Q_{0}+R_{0}+S_{0}+T_{0} \\ &\quad {}+U_{0}+V_{0}+W_{0}+X_{0}+Y_{0}+Z_{0}+L_{0}+E_{0}, \end{aligned} \\& \begin{aligned} M_{11} &= M_{1}+N_{1}+P_{1}+Q_{1}+R_{1}+S_{1}+T_{1} \\ &\quad {}+U_{1}+V_{1}+W_{1}+X_{1}+Y_{1}+Z_{1}+L_{1}+E_{1}, \end{aligned} \\& \begin{aligned} M_{12}& = M_{2}+N_{2}+P_{2}+Q_{2}+R_{2}+S_{2}+T_{2} \\ &\quad {}+U_{2}+V_{2}+W_{2}+X_{2}+Y_{2}+Z_{2}, \end{aligned} \\& \begin{aligned} M_{13}&= M_{3}+N_{3}+P_{3}+Q_{3}+R_{3}+S_{3}+T_{3} \\ &\quad {}+U_{3}+V_{3}, \end{aligned} \\& M_{14} = M_{4}+N_{4}+P_{4}+Q_{4}. \end{aligned}$$
Based on the Routh–Hurwitz criteria, it can be concluded that \(D_{*}(S_{*}, E_{*}, I_{*}, A_{*}, R_{*})\) is locally asymptotically stable when \(\tau =0\) if Eqs. (5)–(9) are satisfied, which we refer to as condition (\(C_{2}\)):
$$\begin{aligned}& \mathrm{det}_{1} =M_{14}>0, \end{aligned}$$
(5)
$$\begin{aligned}& \mathrm{det}_{2} = \begin{vmatrix} M_{14} &{1} \\ M_{12} &M_{13} \end{vmatrix}>0, \end{aligned}$$
(6)
$$\begin{aligned}& \mathrm{det}_{3} = \begin{vmatrix} M_{14} &{1} &{0} \\ M_{12} &M_{13} &M_{14} \\ {0} &M_{11} &M_{12} \end{vmatrix}>0, \end{aligned}$$
(7)
$$\begin{aligned}& \mathrm{det}_{4} = \begin{vmatrix} M_{14} &{1} &{0} &{0} \\ M_{12} &M_{13} &M_{14} &{1} \\ M_{10} &M_{11} &M_{12} &M_{13} \\ {0} &{0} &M_{10} &M_{11} \end{vmatrix}>0, \end{aligned}$$
(8)
$$\begin{aligned}& \mathrm{det}_{5} = \begin{vmatrix} M_{14} &{1} &{0} &{0} &{0} \\ M_{12} &M_{13} &M_{14} &{1} &{0} \\ M_{10} &M_{11} &M_{12} &M_{13} &M_{14} \\ {0} &{0} &M_{10} &M_{11} &M_{12} \\ {0} &{0} &{0} &{0} &M_{10} \end{vmatrix}>0. \end{aligned}$$
(9)
Case 2. \(\tau _{1}>0\), \(\tau _{2}=\tau _{3}=0\), Eq. (3) becomes
$$\begin{aligned}& \lambda ^{5}+M_{24}\lambda ^{4}+M_{23} \lambda ^{3} + M_{22}\lambda ^{2}+M _{21} \lambda +M_{20} \\& \quad {} + \bigl(N_{24}\lambda ^{4}+N_{23}\lambda ^{3}+N_{22}\lambda ^{2}+N_{21} \lambda +N_{20}\bigr)e^{-\lambda \tau _{1}}, \end{aligned}$$
(10)
with
$$\begin{aligned}& \begin{aligned} M_{20} &= M_{0}+P_{0}+Q_{0}+T_{0}+U_{0} \\ &\quad {}+V_{0}+Y_{0}+Z_{0}+E_{0}, \end{aligned} \\& \begin{aligned} M_{21} &= M_{1}+P_{1}+Q_{1}+T_{1}+U_{1} \\ &\quad {}+V_{1}+Y_{1}+Z_{1}+E_{1}, \end{aligned} \\& \begin{aligned} M_{22} &= M_{2}+P_{2}+Q_{2}+T_{2}+U_{2} \\ &\quad {}+V_{2}+Y_{2}+Z_{2}, \end{aligned} \\& M_{23} = M_{3}+P_{3}+Q_{3}+T_{3}+U_{3}+V_{3}, \\& M_{24} = M_{4}+P_{4}+Q_{4}, \\& N_{20} = N_{0}+R_{0}+S_{0}+W_{0}+X_{0}+L_{0}, \\& N_{21} = N_{1}+R_{1}+S_{1}+W_{1}+X_{1}+L_{1}, \\& N_{22} = N_{2}+R_{2}+S_{2}+W_{2}+X_{2}, \\& N_{23} = N_{3}+R_{3}+S_{3},\qquad N_{24}=N_{4}. \end{aligned}$$
Let \(\lambda =i\omega\) (\(\omega >0\)) be the root of Eq. (10), then from Eq. (10) separating real and imaginary part we obtain
$$ \textstyle\begin{cases} f_{21}(\omega )\sin \tau _{1}\omega +f_{22}(\omega )\cos \tau _{1} \omega =f_{23}(\omega ), \\ f_{21}(\omega )\cos \tau _{1}\omega -f_{22}(\omega )\sin \tau _{1} \omega =f_{24}(\omega ), \end{cases} $$
(11)
where
$$\begin{aligned}& f_{21}(\omega ) = N_{21}\omega -N_{23}\omega ^{3}, \\& f_{22}(\omega ) = N_{24}\omega ^{4}-N_{22} \omega ^{2}+N_{20}, \\& f_{23}(\omega ) = M_{22}\omega ^{2}-M_{24} \omega ^{4}-M_{20}, \\& f_{24}(\omega ) = M_{23}\omega ^{3}-\omega ^{5}-M_{21}\omega . \end{aligned}$$
Equation (11) gives the following equation with respect to ω:
$$ \omega ^{10}+h_{24}\omega ^{8}+h_{23}\omega ^{6}+h_{22}\omega ^{4}+h_{21} \omega ^{2}+h_{20}=0, $$
(12)
with
$$\begin{aligned}& h_{20} = M_{20}^{2}-N_{20}^{2}, \\& h_{21} = M_{21}^{2}-2M_{20}M_{22}+2N_{20}N_{22}-N_{21}^{2}, \\& h_{22} = M_{22}^{2}+2M_{20}M_{24}-2M_{21}M_{23}-N_{22}^{2}-2N_{20}N _{24}+2N_{21}N_{23}, \\& h_{23} = 2M_{21}+M_{23}^{2}-2M_{22}M_{24}+2N_{22}N_{24}-N_{23}^{2}, \\& h_{24} = M_{24}^{2}-2M_{23}-N_{24}^{2}. \end{aligned}$$
We suppose that (\(C_{21}\)): Eq. (12) has at least one positive root \(\omega _{0}\).
Furthermore, we have
$$ \tau _{0}=\frac{1}{\omega _{0}}\times \arccos \biggl[ \frac{f_{21}(\omega _{0})\times f_{24}(\omega _{0})+f_{22}(\omega _{0})\times f_{23}(\omega _{0})}{f_{21}^{2}(\omega _{0})+f_{22}^{2}(\omega _{0})} \biggr]. $$
(13)
Now differentiating Eq. (10) with respect to \(\tau _{1}\), we get
$$\begin{aligned} \biggl[\frac{d\lambda }{d\tau _{1}} \biggr]^{-1} =&\frac{5\lambda ^{4}+4M _{24}\lambda ^{3}+3M_{23}\lambda ^{2}+2M_{22}\lambda +M_{21}}{\lambda ( \lambda ^{5}+M_{24}\lambda ^{4}+M_{23}\lambda ^{3}+M_{22}\lambda ^{2}+M _{21}\lambda +M_{20})} \\ &{}+\frac{4N_{24}\lambda ^{3}+3N_{23}\lambda ^{2}+2N_{22}\lambda +N_{21}}{ \lambda (N_{24}\lambda ^{4}+N_{23}\lambda ^{3}+N_{22}\lambda ^{2}+N_{21} \lambda +N_{20})}-\frac{\tau _{1}}{\lambda }. \end{aligned}$$
(14)
Substituting \(\lambda =i\omega _{0}\) and simplifying we get
$$ \operatorname{Re} \biggl[\frac{d\lambda }{d\tau _{1}} \biggr]^{-1}_{\tau _{1}=\tau _{10}}= \frac{f_{20}^{\prime }(v_{0})}{f_{21}^{2}(\omega _{0})+f_{22} ^{2}(\omega _{0})}, $$
where \(f_{20}(v)=v^{5}+h_{24}v^{4}+h_{23}v^{3}+h_{22}v^{2}+h_{21}v+h _{20}\) and \(v=\omega ^{2}\).

Therefore, if \((C_{22})\): \(f^{\prime }(v_{0})\neq 0\) is satisfied, then \(\operatorname{Re}[\frac{d\lambda }{d\tau _{1}}]^{-1}_{\tau _{1}=\tau _{10}} \neq 0\). Thus, we have the following conclusions based on the Hopf bifurcation theorem in [35].

Theorem 1

For system (2), if the conditions (\(C_{21}\))(\(C_{22}\)) hold, then\(D_{*}(S_{*}, E_{*}, I_{*}, A_{*}, R_{*})\)is locally asymptotically stable when\(\tau _{1}\in [0, \tau _{10})\); system (2) undergoes a Hopf bifurcation at\(D_{*}(S_{*}, E_{*}, I_{*}, A_{*}, R_{*})\)when\(\tau _{1}=\tau _{10}\).

Case 3. \(\tau _{2}>0\), \(\tau _{1}=\tau _{3}=0\), Eq. (3) becomes
$$\begin{aligned}& \lambda ^{5}+M_{34}\lambda ^{4}+M_{33} \lambda ^{3} + M_{32}\lambda ^{2}+M _{31} \lambda +M_{30} \\& \quad{} + \bigl(P_{34}\lambda ^{4}+P_{33}\lambda ^{3}+P_{32}\lambda ^{2}+P_{31} \lambda +P_{30}\bigr)e^{-\lambda \tau _{2}} \\& \quad{} + \bigl(U_{33}\lambda ^{3}+U_{32}\lambda ^{2}+U_{31}\lambda +U_{30}\bigr)e^{-2 \lambda \tau _{2}}=0, \end{aligned}$$
(15)
with
$$\begin{aligned}& M_{30} = M_{0}+N_{0}+Q_{0}+S_{0}+V_{0}+X_{0}, \\& M_{31} = M_{1}+N_{1}+Q_{1}+S_{1}+V_{1}+X_{1}, \\& M_{32} = M_{2}+N_{2}+Q_{2}+S_{2}+V_{2}+X_{2}, \\& M_{33} = M_{3}+N_{3}+Q_{3}+S_{3}+V_{3}, \\& M_{34} = M_{4}+N_{4}+Q_{4}, \\& P_{30} = P_{0}+R_{0}+T_{0}+W_{0}+Y_{0}+L_{0}, \\& P_{31} = P_{1}+R_{1}+T_{1}+W_{1}+Y_{1}+L_{1}, \\& P_{32} = P_{2}+R_{2}+T_{2}+W_{2}+Y_{2}, \\& P_{33} = P_{3}+R_{3}+T_{3}+W_{3}, P_{34}=P_{4}, \\& U_{30} = U_{0}+Z_{0}+E_{0}, \\& U_{31} = U_{1}+Z_{1}+E_{1}, \\& U_{32} = U_{2}+Z_{2},\qquad U_{33}=U_{3}. \end{aligned}$$
Multiplying by \(e^{\lambda \tau _{2}}\), Eq. (15) becomes
$$\begin{aligned}& P_{34}\lambda ^{4}+P_{33}\lambda ^{3} + P_{32}\lambda ^{2}+P_{31}\lambda +P_{30} \\& \quad {} + \bigl(\lambda ^{5}+M_{34}\lambda ^{4}+M_{33}\lambda ^{3}+M_{32}\lambda ^{2}+M _{31}\lambda +M_{30}\bigr)e^{\lambda \tau _{2}} \\& \quad {} + \bigl(U_{33}\lambda ^{3}+U_{32}\lambda ^{2}+U_{31}\lambda +U_{30}\bigr)e^{- \lambda \tau _{2}}=0. \end{aligned}$$
(16)
Let \(\lambda =i\omega (\omega >0)\) be the root of Eq. (16), then from Eq. (16) separating real and imaginary parts we obtain
$$ \textstyle\begin{cases} f_{31}(\omega )\sin \tau _{2}\omega +f_{32}(\omega )\cos \tau _{2} \omega =f_{33}(\omega ), \\ f_{34}(\omega )\cos \tau _{2}\omega -f_{35}(\omega )\sin \tau _{2} \omega =f_{36}(\omega ), \end{cases} $$
(17)
where
$$\begin{aligned}& f_{31}(\omega ) = (U_{31}-M_{31})\omega -(U_{33}-M_{33})\omega ^{3}- \omega ^{5}, \\& f_{32}(\omega ) = M_{34}\omega ^{4}-(M_{32}+U_{32}) \omega ^{2}+M_{30}+U _{30}, \\& f_{33}(\omega ) = P_{32}\omega ^{2}-P_{34} \omega ^{4}-P_{30}, \\& f_{34}(\omega ) = (U_{31}+M_{31})\omega -(U_{33}+M_{33})\omega ^{3}+ \omega ^{5}, \\& f_{35}(\omega ) = -M_{34}\omega ^{4}+(M_{32}-U_{32}) \omega ^{2}-M_{30}+U _{30}, \\& f_{36}(\omega ) = P_{33}\omega ^{3}-P_{31} \omega . \end{aligned}$$
It follows that
$$ \sin \tau _{2}\omega =\frac{f_{33}(\omega )\times f_{34}(\omega )-f _{32}(\omega )\times f_{36}(\omega )}{f_{31}(\omega )\times f_{34}( \omega )+f_{32}(\omega )\times f_{35}(\omega )} $$
(18)
and
$$ \cos \tau _{2}\omega =\frac{f_{31}(\omega )\times f_{36}(\omega )+f _{33}(\omega )\times f_{35}(\omega )}{f_{31}(\omega )\times f_{34}( \omega )+f_{32}(\omega )\times f_{35}(\omega )}. $$
(19)
Thus,
$$\begin{aligned}& \bigl[f_{33}(\omega )\times f_{34}(\omega ) - f_{32}(\omega )\times f_{36}( \omega )\bigr]^{2} \\& \quad {} + \bigl[f_{31}(\omega )\times f_{36}(\omega )+f_{33}(\omega )\times f_{35}( \omega )\bigr]^{2} \\& \quad {} - \bigl[f_{31}(\omega )\times f_{34}(\omega )+f_{32}(\omega )\times f_{35}( \omega ) \bigr]^{2}=0. \end{aligned}$$
(20)

Similar to Case 2, we assume that (\(C_{31}\)) Eq. (20) has at least one positive root \(\omega _{0}\).

Then we get
$$ \tau _{20}=\frac{1}{\omega _{0}}\times \arccos \biggl[ \frac{f_{31}(\omega _{0})\times f_{36}(\omega _{0})+f_{33}(\omega _{0})\times f_{35}(\omega _{0})}{f_{31}(\omega _{0})\times f_{34}(\omega _{0})+f_{32}(\omega _{0}) \times f_{35}(\omega _{0})} \biggr]. $$
(21)
Also, differentiating Eq. (16) with respect to \(\tau _{2}\), we get
$$ \biggl[\frac{d\lambda }{d\tau _{2}} \biggr]^{-1} = \frac{g_{31}(\omega )}{g _{32}(\omega )}-\frac{\tau _{2}}{\lambda }, $$
(22)
where
$$\begin{aligned}& \begin{aligned} g_{31}(\omega ) &= 4P_{34}\lambda ^{3}+3P_{33}\lambda ^{2}+2P_{32}\lambda +P_{31} \\ &\quad {}+\bigl(5\lambda ^{4}+4M_{34}\lambda ^{3}+3M_{33}\lambda ^{2}+2M_{32}\lambda +M_{31}\bigr)e^{\lambda \tau _{2}} \\ &\quad {}+\bigl(3U_{33}\lambda ^{2}+2U_{32}\lambda +U_{31}\bigr)e^{-\lambda \tau _{2}}, \end{aligned} \\& \begin{aligned} g_{32}(\omega ) &= \bigl(U_{33}\lambda ^{4}+U_{32}\lambda ^{3}+U_{31}\lambda ^{2}+U_{30}\lambda \bigr)e^{-\lambda \tau _{2}} \\ &\quad {}-\bigl(\lambda ^{6}+M_{34}\lambda ^{5}+M_{33}\lambda ^{4}+M_{32}\lambda ^{3}+M _{31}\lambda ^{2}+M_{30}\lambda \bigr)e^{\lambda \tau _{2}}. \end{aligned} \end{aligned}$$
Furthermore,
$$ \operatorname{Re} \biggl[\frac{d\lambda }{d\tau _{2}} \biggr]^{-1}_{\tau _{2}=\tau _{20}} = \frac{U_{3R}V_{3R}+U_{3I}V_{3I}}{V_{3R}^{2}+V_{3I}^{2}}, $$
(23)
with
$$\begin{aligned}& \begin{aligned} U_{3R} &=\bigl[5\omega _{0}^{4}-3(M_{33}+U_{33}) \omega _{0}^{2}+M_{31}+U_{31}\bigr] \cos \tau _{20}\omega _{0} \\ &\quad {}-2\bigl[(M_{32}-U_{32})\omega _{0}-2M_{34} \omega _{0}^{3}\bigr]\sin \tau _{20} \omega _{0}+P_{31}-3P_{33}\omega _{0}^{2}, \end{aligned} \\& \begin{aligned} U_{3I} &=\bigl[5\omega _{0}^{4}-3(M_{33}-U_{33}) \omega _{0}^{2}+M_{31}-U_{31}\bigr] \sin \tau _{20}\omega _{0} \\ &\quad {}+2\bigl[(M_{32}+U_{32})\omega _{0}-2M_{34} \omega _{0}^{3}\bigr]\cos \tau _{20} \omega _{0}+2P_{31}\omega _{0}-4P_{34}\omega _{0}^{3}, \end{aligned} \\& \begin{aligned} V_{3R} &=\bigl[(U_{30}-M_{30}) \omega _{0}-(U_{32}-M_{32})\omega _{0}^{3}-M _{34}\omega _{0}^{5} \bigr]\sin \tau _{20}\omega _{0} \\ &\quad {}+\bigl[(U_{33}+M_{33})\omega _{0}^{4}-(U_{31}+M_{31}) \omega _{0}^{2}-\omega _{0}^{6}\bigr] \cos \tau _{20}\omega _{0}, \end{aligned} \\& \begin{aligned} V_{3I} &=\bigl[(U_{30}+M_{30}) \omega _{0}-(U_{32}+M_{32})\omega _{0}^{3}+M _{34}\omega _{0}^{5} \bigr]\cos \tau _{20}\omega _{0} \\ &\quad {}-\bigl[(U_{33}-M_{33})\omega _{0}^{4}-(U_{31}-M_{31}) \omega _{0}^{2}-\omega _{0}^{6}\bigr] \sin \tau _{20}\omega _{0}. \end{aligned} \end{aligned}$$

Therefore, if (\(C_{32}\)): \(U_{3R}V_{3R}+U_{3I}V_{3I}\neq 0\) is satisfied, then \(\operatorname{Re}[\frac{d\lambda }{d\tau _{2}}]^{-1}_{\tau _{2}=\tau _{20}}\neq 0\). Thus, we have the following conclusions based on the Hopf bifurcation theorem in [35].

Theorem 2

For system (2), if the conditions\((C_{31})\)\((C_{32})\)hold, then\(D_{*}(S_{*}, E_{*}, I_{*}, A_{*}, R_{*})\)is locally asymptotically stable when\(\tau _{2}\in [0, \tau _{20})\); system (2) undergoes a Hopf bifurcation at\(D_{*}(S_{*}, E_{*}, I_{*}, A_{*}, R_{*})\)when\(\tau _{2}=\tau _{20}\).

Case 4. \(\tau _{3}>0\), \(\tau _{1}=\tau _{2}=0\), Eq. (3) becomes
$$\begin{aligned}& \lambda ^{5}+M_{44}\lambda ^{4}+M_{43} \lambda ^{3} + M_{42}\lambda ^{2}+M _{41} \lambda +M_{40} \\& \quad {} + \bigl(Q_{44}\lambda ^{4}+Q_{43}\lambda ^{3}+Q_{42}\lambda ^{2}+Q_{41} \lambda +Q_{40}\bigr)e^{-\lambda \tau _{3}} \\& \quad {} + \bigl(V_{43}\lambda ^{3}+V_{42}\lambda ^{2}+V_{41}\lambda +V_{40}\bigr)e^{-2 \lambda \tau _{3}}=0, \end{aligned}$$
(24)
with
$$\begin{aligned}& M_{40} = M_{0}+N_{0}+P_{0}+R_{0}+U_{0}, \\& M_{41} = M_{1}+N_{1}+P_{1}+R_{1}+U_{1}, \\& M_{42} = M_{2}+N_{2}+P_{2}+R_{2}+U_{2}, \\& M_{43} = M_{3}+N_{3}+P_{3}+R_{3}+U_{3}, \\& M_{44} = M_{4}+N_{4}+P_{4}, \\& Q_{40} = Q_{0}+S_{0}+T_{0}+W_{0}+Z_{0}, \\& Q_{41} = Q_{1}+S_{1}+T_{1}+W_{1}+Z_{1}, \\& Q_{42} = Q_{2}+S_{2}+T_{2}+W_{2}+Z_{2}, \\& Q_{43} = Q_{3}+S_{3}+T_{3},\qquad Q_{44}=Q_{4}, \\& V_{40} = V_{0}+X_{0}+Y_{0}+L_{0}+E_{0}, \\& V_{41} = V_{1}+X_{1}+Y_{1}+L_{1}+E_{1}, \\& V_{42} = V_{2}+X_{2}+Y_{2},\qquad V_{43}=V_{3}. \end{aligned}$$
Multiplying by \(e^{\lambda \tau _{3}}\), Eq. (24) becomes
$$\begin{aligned}& Q_{44}\lambda ^{4}+Q_{43}\lambda ^{3} + Q_{42}\lambda ^{2}+Q_{41}\lambda +Q_{40} \\& \quad {} + \bigl(\lambda ^{5}+M_{44}\lambda ^{4}+M_{43}\lambda ^{3}+M_{42}\lambda ^{2}+M _{41}\lambda +M_{40}\bigr)e^{\lambda \tau _{3}} \\& \quad {} + \bigl(V_{43}\lambda ^{3}+V_{42}\lambda ^{2}+V_{41}\lambda +V_{40}\bigr)e^{- \lambda \tau _{3}}=0. \end{aligned}$$
(25)
Let \(\lambda =i\omega (\omega >0)\) be the root of Eq. (25), then following the same computation as done in Case 3 we obtain
$$ \sin \tau _{2}\omega =\frac{f_{43}(\omega )\times f_{44}(\omega )-f _{42}(\omega )\times f_{46}(\omega )}{f_{41}(\omega )\times f_{44}( \omega )+f_{42}(\omega )\times f_{45}(\omega )} $$
(26)
and
$$ \cos \tau _{2}\omega =\frac{f_{41}(\omega )\times f_{46}(\omega )+f _{43}(\omega )\times f_{45}(\omega )}{f_{41}(\omega )\times f_{44}( \omega )+f_{42}(\omega )\times f_{45}(\omega )}, $$
(27)
where
$$\begin{aligned}& f_{41}(\omega ) = (V_{41}-M_{41})\omega -(V_{43}-M_{43})\omega ^{3}- \omega ^{5}, \\& f_{42}(\omega ) = M_{44}\omega ^{4}-(M_{42}+V_{42}) \omega ^{2}+M_{40}+V _{40}, \\& f_{43}(\omega ) = Q_{42}\omega ^{2}-Q_{44} \omega ^{4}-Q_{40}, \\& f_{44}(\omega ) = (V_{41}+M_{41})\omega -(V_{43}+M_{43})\omega ^{3}+ \omega ^{5}, \\& f_{45}(\omega ) = -M_{44}\omega ^{4}+(M_{42}-V_{42}) \omega ^{2}-M_{40}+V _{40}, \\& f_{46}(\omega ) = Q_{43}\omega ^{3}-Q_{41} \omega . \end{aligned}$$
Furthermore,
$$\begin{aligned}& \bigl[f_{43}(\omega )\times f_{44}(\omega ) - f_{42}(\omega )\times f_{46}( \omega )\bigr]^{2} \\& \quad {} + \bigl[f_{41}(\omega )\times f_{46}(\omega )+f_{43}(\omega )\times f_{45}( \omega )\bigr]^{2} \\& \quad {} - \bigl[f_{41}(\omega )\times f_{44}(\omega )+f_{42}(\omega )\times f_{45}( \omega ) \bigr]^{2}=0. \end{aligned}$$
(28)
Similar to Case 3, we assume that (\(H_{41}\)): Eq. (28) has at least one positive root \(\omega _{0}\). Thus,
$$ \tau _{30}=\frac{1}{\omega _{0}}\times \arccos \biggl[ \frac{f_{41}(\omega _{0})\times f_{46}(\omega _{0})+f_{43}(\omega _{0})\times f_{45}(\omega _{0})}{f_{41}(\omega _{0})\times f_{44}(\omega _{0})+f_{42}(\omega _{0}) \times f_{45}(\omega _{0})} \biggr] $$
(29)
and
$$ \biggl[\frac{d\lambda }{d\tau _{3}} \biggr]^{-1} = \frac{g_{41}(\omega )}{g _{42}(\omega )}-\frac{\tau _{3}}{\lambda }, $$
(30)
where
$$\begin{aligned}& \begin{aligned} g_{41}(\omega ) &=4Q_{44}\lambda ^{3}+3Q_{43}\lambda ^{2}+2Q_{42}\lambda +Q_{41} \\ &\quad {}+\bigl(5\lambda ^{4}+4M_{44}\lambda ^{3}+3M_{43}\lambda ^{2}+2M_{42}\lambda +M_{41}\bigr)e^{\lambda \tau _{3}} \\ &\quad {}+\bigl(3V_{43}\lambda ^{2}+2V_{42} \lambda +V_{41}\bigr)e^{-\lambda \tau _{3}}, \end{aligned} \\& \begin{aligned} g_{42}(\omega ) &=\bigl(V_{43}\lambda ^{4}+V_{42}\lambda ^{3}+V_{41}\lambda ^{2}+V_{40}\lambda \bigr)e^{-\lambda \tau _{3}} \\ &\quad {}-\bigl(\lambda ^{6}+M_{44}\lambda ^{5}+M_{43}\lambda ^{4}+M_{42}\lambda ^{3}+M _{41}\lambda ^{2}+M_{40}\lambda \bigr)e^{\lambda \tau _{3}}. \end{aligned} \end{aligned}$$
Thus,
$$ \operatorname{Re} \biggl[\frac{d\lambda }{d\tau _{3}} \biggr]^{-1}_{\tau _{3}=\tau _{30}} = \frac{U_{4R}V_{4R}+U_{4I}V_{4I}}{V_{4R}^{2}+V_{4I}^{2}}, $$
(31)
with
$$\begin{aligned}& \begin{aligned} U_{4R} &=\bigl[5\omega _{0}^{4}-3(M_{43}+V_{43}) \omega _{0}^{2}+M_{41}+V_{41}\bigr] \cos \tau _{30}\omega _{0} \\ &\quad {}-2\bigl[(M_{42}-V_{42})\omega _{0}-2M_{44}\omega _{0}^{3}\bigr]\sin \tau _{30} \omega _{0}+Q_{41}-3Q_{43} \omega _{0}^{2}, \end{aligned} \\& \begin{aligned} U_{4I} &=\bigl[5\omega _{0}^{4}-3(M_{43}-V_{43}) \omega _{0}^{2}+M_{41}-V_{41}\bigr] \sin \tau _{30}\omega _{0} \\ &\quad {}+2\bigl[(M_{42}+V_{42})\omega _{0}-2M_{44}\omega _{0}^{3}\bigr]\cos \tau _{30} \omega _{0}+2Q_{42}\omega _{0}-3Q_{44}\omega _{0}^{3}, \end{aligned} \\& \begin{aligned} V_{4R} &=\bigl[(V_{40}-M_{40}) \omega _{0}-(V_{42}-M_{42})\omega _{0}^{3}-M _{44}\omega _{0}^{5} \bigr]\sin \tau _{30}\omega _{0} \\ &\quad {}+\bigl[(V_{43}+M_{43})\omega _{0}^{4}-(V_{41}+M_{41}) \omega _{0}^{2}-\omega _{0}^{6}\bigr] \cos \tau _{20}\omega _{0}, \end{aligned} \\& \begin{aligned} V_{4I} &=\bigl[(V_{40}+M_{40}) \omega _{0}-(V_{42}+M_{42})\omega _{0}^{3}+M _{44}\omega _{0}^{5} \bigr]\cos \tau _{30}\omega _{0} \\ &\quad {}-\bigl[(V_{43}-M_{43})\omega _{0}^{4}-(V_{41}-M_{41}) \omega _{0}^{2}-\omega _{0}^{6}\bigr] \sin \tau _{30}\omega _{0}. \end{aligned} \end{aligned}$$

Therefore, if (\(C_{42}\)): \(U_{4R}V_{4R}+U_{4I}V_{4I}\neq 0\) is satisfied, then \(\operatorname{Re}[\frac{d\lambda }{d\tau _{3}}]^{-1}_{\tau _{3}=\tau _{30}}\neq 0\). Thus, we have the following conclusions based on the Hopf bifurcation theorem in [35].

Theorem 3

For system (2), if the conditions (\(C_{41}\))(\(C_{42}\)) hold, then\(D_{*}(S_{*}, E_{*}, I_{*}, A_{*}, R_{*})\)is locally asymptotically stable when\(\tau _{3}\in [0, \tau _{30})\); system (2) undergoes a Hopf bifurcation at\(D_{*}(S_{*}, E_{*}, I_{*}, A_{*}, R_{*})\)when\(\tau _{3}=\tau _{30}\).

Case 5. \(\tau _{1}>0\), \(\tau _{2}\in (0, \tau _{20})\)\(\tau _{3}\in (0, \tau _{30})\). Let \(\lambda =i\omega\) (\(\omega >0\)) be the root of Eq. (3), then we have
$$ \textstyle\begin{cases} f_{51}(\omega )\sin \tau _{1}\omega +f_{52}(\omega )\cos \tau _{1} \omega =f_{53}(\omega ), \\ f_{51}(\omega )\cos \tau _{1}\omega -f_{52}(\omega )\sin \tau _{1} \omega =f_{54}(\omega ), \end{cases} $$
(32)
with
$$\begin{aligned}& \begin{aligned} f_{51}(\omega ) &=N_{1}\omega -N_{3}\omega ^{3}+\bigl(R_{1}\omega -R_{3} \omega ^{3}\bigr)\cos \tau _{2}\omega - \bigl(R_{0}-R_{2}\omega ^{2}\bigr)\sin \tau _{2} \omega \\ &\quad {}+\bigl(S_{1}\omega -S_{3}\omega ^{3} \bigr)\cos \tau _{3}\omega -\bigl(S_{0}-S_{2} \omega ^{2}\bigr)\sin \tau _{3}\omega \\ &\quad {}+W_{1}\omega \cos (\tau _{2}+\tau _{3}) \omega -\bigl(W_{0}-W_{2}\omega ^{2}\bigr) \sin ( \tau _{2}+\tau _{3})\omega \\ &\quad {}+X_{1}\omega \cos 2\tau _{3}\omega - \bigl(X_{0}-X_{2}\omega ^{2}\bigr)\sin 2\tau _{3}\omega \\ &\quad {}+L_{1}\omega \cos (\tau _{2}+2\tau _{3}) \omega -L_{0}\sin (\tau _{2}+2 \tau _{3})\omega , \end{aligned} \\& \begin{aligned} f_{52}(\omega ) &=N_{4}\omega ^{4}-N_{2}\omega ^{2}+N_{0}+ \bigl(R_{1}\omega -R_{3}\omega ^{3}\bigr)\sin \tau _{2}\omega +\bigl(R_{0}-R_{2}\omega ^{2} \bigr)\cos \tau _{2}\omega \\ &\quad {}+\bigl(S_{1}\omega -S_{3}\omega ^{3} \bigr)\sin \tau _{3}\omega +\bigl(S_{0}-S_{2} \omega ^{2}\bigr)\cos \tau _{3}\omega \\ &\quad {}+W_{1}\omega \sin (\tau _{2}+\tau _{3}) \omega +\bigl(W_{0}-W_{2}\omega ^{2}\bigr) \cos ( \tau _{2}+\tau _{3})\omega \\ &\quad {}+X_{1}\omega \sin 2\tau _{3}\omega + \bigl(X_{0}-X_{2}\omega ^{2}\bigr)\cos 2\tau _{3}\omega , \end{aligned} \\& \begin{aligned} f_{53}(\omega ) &=M_{2}\omega _{2}-M_{4}\omega ^{4}-M_{0}- \bigl(P_{1}\omega -P_{3}\omega ^{3}\bigr)\sin \tau _{2}\omega -\bigl(P_{4}\omega ^{4}-P_{2} \omega ^{2}+P_{0}\bigr)\cos \tau _{2}\omega \\ &\quad {}-\bigl(Q_{1}\omega -Q_{3}\omega ^{3} \bigr)\sin \tau _{3}\omega -\bigl(Q_{4}\omega ^{4}-Q_{2}\omega ^{2}+Q_{0}\bigr)\cos \tau _{3}\omega \\ &\quad {}-\bigl(T_{1}\omega -T_{3}\omega ^{3} \bigr)\sin (\tau _{2}+\tau _{3})\omega -\bigl(T _{0}-T_{2}\omega ^{2}\bigr)\cos (\tau _{2}+\tau _{3})\omega \\ &\quad {}-\bigl(U_{1}\omega -U_{3}\omega ^{3} \bigr)\sin 2\tau _{2}\omega -\bigl(U_{0}-U_{2} \omega ^{2}\bigr)\cos 2\tau _{2}\omega \\ &\quad {}-\bigl(V_{1}\omega -V_{3}\omega ^{3} \bigr)\sin 2\tau _{3}\omega -\bigl(V_{0}-V_{2} \omega ^{2}\bigr)\cos 2\tau _{3}\omega \\ &\quad {}-Y_{1}\omega \sin (\tau _{2}+2\tau _{3}) \omega -\bigl(Y_{0}-Y_{2}\omega ^{2}\bigr)\cos ( \tau _{2}+2\tau _{3})\omega \\ &\quad {}-Z_{1}\omega \sin (2\tau _{2}+\tau _{3}) \omega -\bigl(Z_{0}-Z_{2}\omega ^{2}\bigr)\cos (2 \tau _{2}+\tau _{3})\omega \\ &\quad {}-E_{1}\omega \sin 2(\tau _{2}+\tau _{3}) \omega -E_{0}\cos 2(\tau _{2}+ \tau _{3})\omega , \end{aligned} \\& f_{54}(\omega ) =M_{3}\omega ^{3}-\omega ^{5}-M_{1}\omega - \bigl(P_{1} \omega -P_{3}\omega ^{3}\bigr)\cos \tau _{2}\omega +\bigl(P_{4}\omega ^{4}-P_{2} \omega ^{2}+P_{0}\bigr)\sin \tau _{2}\omega \\& \hphantom{f_{54}(\omega ) ={}}{}-\bigl(Q_{1}\omega -Q_{3}\omega ^{3} \bigr)\cos \tau _{3}\omega +\bigl(Q_{4}\omega ^{4}-Q_{2}\omega ^{2}+Q_{0}\bigr)\sin \tau _{3}\omega \\& \hphantom{f_{54}(\omega ) ={}} {}-\bigl(T_{1}\omega -T_{3}\omega ^{3} \bigr)\cos (\tau _{2}+\tau _{3})\omega +\bigl(T _{0}-T_{2}\omega ^{2}\bigr)\sin (\tau _{2}+\tau _{3})\omega \\& \hphantom{f_{54}(\omega ) ={}} {}-\bigl(U_{1}\omega -U_{3}\omega ^{3} \bigr)\cos 2\tau _{2}\omega +\bigl(U_{0}-U_{2} \omega ^{2}\bigr)\sin 2\tau _{2}\omega \\& \hphantom{f_{54}(\omega ) ={}} {}-\bigl(V_{1}\omega -V_{3}\omega ^{3} \bigr)\cos 2\tau _{3}\omega +\bigl(V_{0}-V_{2} \omega ^{2}\bigr)\sin 2\tau _{3}\omega \\& \hphantom{f_{54}(\omega ) ={}} {}-Y_{1}\omega \cos (\tau _{2}+2\tau _{3}) \omega +\bigl(Y_{0}-Y_{2}\omega ^{2}\bigr)\sin ( \tau _{2}+2\tau _{3})\omega \\& \hphantom{f_{54}(\omega ) ={}} {}-Z_{1}\omega \cos (2\tau _{2}+\tau _{3}) \omega +\bigl(Z_{0}-Z_{2}\omega ^{2}\bigr)\sin (2 \tau _{2}+\tau _{3})\omega \\& \hphantom{f_{54}(\omega ) ={}} {}-E_{1}\omega \cos 2(\tau _{2}+\tau _{3}) \omega +E_{0}\sin 2(\tau _{2}+ \tau _{3})\omega . \end{aligned}$$
Thus, we can obtain the following equation with respect to ω:
$$ f_{53}^{2}(\omega )+f_{54}^{2}( \omega )-f_{51}^{2}(\omega )-f_{52} ^{2}( \omega )=0. $$
(33)

In order to give the main results in the present paper, we suppose that (\(C_{51}\)): Eq. (33) has at least one positive root \(\omega _{1*}\).

Thus, we can obtain
$$ \tau _{1*}=\frac{1}{\omega _{1*}}\times \arccos \biggl[ \frac{f_{51}( \omega _{1*})\times f_{54}(\omega _{1*})+f_{52}(\omega _{1*})\times f _{53}(\omega _{1*})}{f_{51}^{2}(\omega _{1*})+f_{52}^{2}(\omega _{1*})} \biggr]. $$
(34)
Taking the derivative of λ with respect to \(\tau _{1}\) in Eq. (3), we obtain
$$ \biggl[\frac{d\lambda }{d\tau _{1}} \biggr]^{-1} = \frac{g_{51}(\omega )}{g _{52}(\omega )}-\frac{\tau _{1}}{\lambda }, $$
(35)
where
$$\begin{aligned}& \begin{aligned} g_{51}(\omega ) & = 5\lambda ^{4}+4M_{4} \lambda ^{3}+3M_{3}\lambda ^{2}+2M _{2} \lambda +M_{1}+\bigl(4N_{4}\lambda ^{3}+3N_{3} \lambda ^{2}+2N_{2}\lambda +N_{1} \bigr)e^{-\lambda \tau _{1}} \\ &\quad {}-\bigl[\tau _{2}P_{4}\lambda ^{4}+(\tau _{2}P_{3}-4P_{4})\lambda ^{3}+(\tau _{2}P_{2}-3P_{3})\lambda ^{2} \\ &\quad {}+(\tau _{2}P_{1}-2P_{2})\lambda +\tau _{2}P _{0}-P_{1}\bigr]e^{-\lambda \tau _{2}} \\ &\quad {}-\bigl[\tau _{3}Q_{4}\lambda ^{4}+(\tau _{3}Q_{3}-4Q_{4})\lambda ^{3}+(\tau _{3}Q_{2}-3Q_{3})\lambda ^{2} \\ &\quad {}+(\tau _{3}Q_{1}-2Q_{2})\lambda +\tau _{3}Q _{0}-Q_{1}\bigr]e^{-\lambda \tau _{3}} \\ &\quad {}-\bigl[\tau _{2}R_{3}\lambda ^{3}+(\tau _{2}R_{2}-3R_{3})\lambda ^{2}+(\tau _{2}R_{1}-2R_{2})\lambda +\tau _{2}R_{0}-R_{1}\bigr]e^{-(\tau _{1}+\tau _{2})} \\ &\quad {}-\bigl[\tau _{3}S_{3}\lambda ^{3}+(\tau _{3}S_{2}-3S_{3})\lambda ^{2}+(\tau _{3}S_{1}-2S_{2})\lambda +\tau _{3}S_{0}-S_{1}\bigr]e^{-(\tau _{1}+\tau _{3})} \\ &\quad {}-\bigl[(\tau _{2}+\tau _{3})T_{3}\lambda ^{3}+\bigl((\tau _{2}+\tau _{3})T_{2}-3T _{3}\bigr)\lambda ^{2} \\ &\quad {}+\bigl((\tau _{2}+\tau _{3})T_{1}-2T_{2}\bigr)\lambda +(\tau _{2}+ \tau _{3})T_{0}-T_{1} \bigr]e^{-(\tau _{2}+\tau _{3})} \\ &\quad {}-\bigl[2\tau _{2}U_{3}\lambda ^{3}+(2\tau _{2}U_{2}-3U_{3})\lambda ^{2}+(2 \tau _{2}U_{1}-2U_{2})\lambda +2\tau _{2}U_{0}-U_{1}\bigr]e^{-2\tau _{2}} \\ &\quad {}-\bigl[2\tau _{3}V_{3}\lambda ^{3}+(2\tau _{3}V_{2}-3V_{3})\lambda ^{2}+(2 \tau _{3}V_{1}-2V_{2})\lambda +2\tau _{3}V_{0}-V_{1}\bigr]e^{-2\tau _{3}} \\ &\quad {}-\bigl[(\tau _{2}+\tau _{3})W_{2}\lambda ^{2}+\bigl((\tau _{2}+\tau _{3})W_{1}-2W _{2}\bigr)\lambda +(\tau _{2}+\tau _{3})W_{0}-W_{1} \bigr]e^{-\lambda (\tau _{1}+ \tau _{2}+\tau _{3})} \\ &\quad {}-\bigl[2\tau _{3}X_{2}\lambda ^{2}+(2\tau _{3}X_{1}-2X_{2})\lambda +2\tau _{3}X_{0}-X_{1}\bigr]e^{-\lambda (\tau _{1}+2\tau _{3})} \\ &\quad {}-\bigl[2\tau _{3}Y_{2}\lambda ^{2}+(2\tau _{3}Y_{1}-2Y_{2})\lambda +2\tau _{3}Y_{0}-Y_{1}\bigr]e^{-\lambda (\tau _{2}+2\tau _{3})} \\ &\quad {}-\bigl[(2\tau _{2}+\tau _{3})Z_{2}\lambda ^{2}+\bigl((2\tau _{2}+\tau _{3})Z_{1}-2Z _{2}\bigr)\lambda +(2\tau _{2}+\tau _{3})Z_{0}-Z_{1} \bigr]e^{-\lambda (2\tau _{2}+ \tau _{3})} \\ &\quad {}-\bigl[(\tau _{2}+2\tau _{3})L_{1} \lambda +(\tau _{2}+2\tau _{3})L_{0}-L_{1} \bigr]e ^{-\lambda (\tau _{2}+2\tau _{3})} \\ &\quad {}-\bigl[2(\tau _{2}+\tau _{3})E_{1} \lambda +2(\tau _{2}+\tau _{3})E_{0}-E_{1} \bigr]e ^{-2\lambda (\tau _{2}+\tau _{3})}, \end{aligned} \\& \begin{aligned} g_{51}(\omega ) & = \bigl(N_{4}\lambda ^{4}+N_{3}\lambda ^{3}+N_{2}\lambda ^{2}+N _{1}\lambda +N_{0}\bigr)e^{-\lambda \tau _{1}}+ \bigl(R_{3}\lambda ^{3}+R_{2} \lambda ^{2}+R_{1}\lambda +R_{0}\bigr)e^{-\lambda (\tau _{1}+\tau _{2})} \\ &\quad {} +\bigl(S_{3}\lambda ^{3}+S_{2}\lambda ^{2}+S_{1}\lambda +S_{0}\bigr)e^{-\lambda (\tau _{1}+\tau _{3})}+ \bigl(W_{2}\lambda ^{2}+W_{1}\lambda +W_{0}\bigr)e^{-\lambda (\tau _{1}+\tau _{2}+\tau _{3})} \\ &\quad {} +\bigl(X_{2}\lambda ^{2}+X_{1}\lambda +X_{0}\bigr)e^{-\lambda (\tau _{1}+2\tau _{3})}+(L_{1}\lambda +L_{0})e^{-\lambda (\tau _{1}+\tau _{2}+2\tau _{3})}. \end{aligned} \end{aligned}$$
Define
$$ \operatorname{Re} \biggl[\frac{d\lambda }{d\tau _{1}} \biggr]^{-1}_{\tau _{1}=\tau _{1*}} = \frac{U_{5R}V_{5R}+U_{5I}V_{5I}}{V_{5R}^{2}+V_{5I}^{2}}. $$
(36)

Thus, if (\(C_{52}\)): \(U_{5R}V_{5R}+U_{5I}V_{5I}\neq 0\) is satisfied, then \(\operatorname{Re}[\frac{d\lambda }{d\tau _{1}}]^{-1}_{\tau _{1}=\tau _{1*}} \neq 0\). Furthermore, we have the following conclusions based on the Hopf bifurcation theorem in [35].

Theorem 4

For system (2), if the conditions\((C_{51})\)\((C_{52})\)hold, then\(D_{*}(S_{*}, E_{*}, I_{*}, A_{*}, R_{*})\)is locally asymptotically stable when\(\tau _{1}\in [0, \tau _{1*})\); system (2) undergoes a Hopf bifurcation at\(D_{*}(S_{*}, E_{*}, I_{*}, A_{*}, R_{*})\)when\(\tau _{1}=\tau _{1*}\).

3 Direction and stability of the Hopf bifurcation

In this section, we will investigate the direction and stability of the Hopf bifurcation at the critical value \(\tau _{1}=\tau _{1*}\) by employing the center manifold theorem and the normal form theory. Let \(\tau _{1}=\tau _{1*}+\mu \), \(\mu \in R\), then μ is the Hopf bifurcation value for system (2). For convenience, we suppose that \(\tau _{3*}<\tau _{2*}<\tau _{1*}\) where \(\tau _{3*}\in (0, \tau _{30})\) and \(\tau _{2*}\in (0, \tau _{20})\). Let \(u_{1}=S(\tau _{1} t)\), \(u_{2}=E(\tau _{1} t)\), \(u_{3}=I(\tau _{1} t)\), \(u_{4}=A(\tau _{1} t)\) and \(u_{5}=R(\tau _{1} t)\). System (2) can be transformed into the following form:
$$ \dot{u}(t)=L_{\mu }(u_{t})+F(\mu , u_{t}), $$
(37)
where \(u(t)=(u_{1}, u_{2}, u_{3}, u_{4} u_{5})^{T} \in C=C([-1, 0], \mathrm{R}^{5})\), \(L_{\mu }: C\rightarrow \mathrm{R}^{5}\) and \(F: \mathrm{R}\times C\rightarrow \mathrm{R}^{5}\) can be defined as
$$ L_{\mu }\phi =(\tau _{1*}+\mu ) \biggl(M\phi (0)+P\phi \biggl(-\frac{\tau _{2*}}{\tau _{1*}} \biggr)+Q\phi \biggl(-\frac{\tau _{3*}}{\tau _{1*}} \biggr)+N\phi (-1) \biggr) $$
and
$$ F(\mu , \phi )=(\tau _{1*}+\mu ) \begin{pmatrix} -\beta _{1}\phi _{1}(0)\phi _{2}(0)-\beta _{2}\phi _{1}(0)\phi _{4}(0) \\ \beta _{1}\phi _{1}(0)\phi _{2}(0) \\ -\beta _{2}\phi _{3}(0)\phi _{4}(0) \\ \beta _{2}\phi _{1}(0)\phi _{4}(0)+\beta _{2}\phi _{3}(0)\phi _{4}(0) \\ {0} \end{pmatrix} $$
with
$$\begin{aligned}& M= \begin{pmatrix} m_{11} &m_{12} &{0} &m_{14} &{0} \\ m_{21} &m_{22} &{0} &{0} &{0} \\ {0} &{0} &m_{33} &m_{34} &{0} \\ m_{41} &{0} &m_{43} &m_{44} &{0} \\ m_{51} &{0} &{0} &{0} &m_{55} \end{pmatrix},\qquad N= \begin{pmatrix} {0} &{0} &{0} &{0} &{0} \\ {0} &n_{22} &{0} &{0} &{0} \\ {0} &n_{32} &{0} &{0} &{0} \\ {0} &{0} &{0} &{0} &{0} \\ {0} &{0} &{0} &{0} &{0} \end{pmatrix}, \\& P= \begin{pmatrix} {0} &{0} &{0} &{0} &{0} \\ {0} &p_{22} &{0} &{0} &{0} \\ {0} &{0} &{0} &{0} &{0} \\ {0} &{0} &{0} &p_{44} &{0} \\ {0} &p_{52} &{0} &p_{54} &{0} \end{pmatrix},\qquad Q= \begin{pmatrix} {0} &{0} &{0} &{0} &q_{15} \\ {0} &{0} &{0} &{0} &{0} \\ {0} &{0} &{0} &{0} &{0} \\ {0} &{0} &{0} &{0} &{0} \\ {0} &{0} &{0} &{0} &q_{55} \end{pmatrix}. \end{aligned}$$
Thus, for \(\phi \in C\), there exists \(\eta (\theta , \mu )\) such that
$$ L_{\mu }\phi = \int _{-1}^{0}d\eta (\theta , \mu )\phi (\theta ). $$
(38)
In fact, choosing
$$ \eta (\theta ,\mu )= \textstyle\begin{cases} (\tau _{1*}+\mu )(M+N+P+Q), & \theta =0, \\ (\tau _{1*}+\mu )(N+P+Q), & \theta \in [-\frac{\tau _{3*}}{\tau _{1*}}, 0), \\ (\tau _{1*}+\mu )(N+P), & \theta \in [-\frac{\tau _{2*}}{\tau _{1*}}, - \frac{\tau _{3*}}{\tau _{1*}}), \\ (\tau _{1*}+\mu )N, & \theta \in (-1, -\frac{\tau _{2*}}{\tau _{1*}}), \\ 0,& \theta =-1, \end{cases} $$
(39)
where \(\delta (\theta )\) is the Dirac delta function.
For \(\phi \in C([-1,0], R^{5})\), define
$$ A(\mu )\phi =\textstyle\begin{cases} \frac{d\phi (\theta )}{d\theta },& {-}1\leq \theta < 0, \\ \int _{-1}^{0}d\eta (\theta ,\mu )\phi (\theta ),& \theta =0, \end{cases} $$
and
$$ R(\mu )\phi =\textstyle\begin{cases} 0,& {-}1\leq \theta < 0, \\ F(\mu ,\phi ),& \theta =0. \end{cases} $$
Then system (37) equals
$$ \dot{u}(t)=A(\mu )u_{t}+R(\mu )u_{t}. $$
(40)
For \(\varphi \in C^{1}([0, 1], (R^{5})^{*})\), define
$$ A^{*}(\varphi )= \textstyle\begin{cases} -\frac{d\varphi (s)}{ds},& 0< s\leq 1, \\ \int _{-1}^{0}d{\eta }^{T}(s,0)\varphi (-s), &s=0, \end{cases} $$
and
$$ \bigl\langle \varphi (s),\phi (\theta )\bigr\rangle =\bar{\varphi }(0)\phi (0)- \int _{\theta =-1}^{0} \int _{\xi =0}^{\theta }\bar{\varphi }(\xi - \theta )\,d\eta (\theta )\phi (\xi )\,d\xi , $$
(41)
where \(\eta (\theta )=\eta (\theta , 0)\).
By the discussion above, we can conclude that \(\pm i\omega _{1*}\tau _{1*}\) are eigenvalues of \(A(0)\) and \(A^{*}\). Let \(\kappa (\theta )=(1, \kappa _{2}, \kappa _{3}, \kappa _{4}, \kappa _{5})^{T}e^{i\tau _{1*} \omega _{1*}\theta }\) be the eigenvector of \(A(0)\) corresponding to \(+i\tau _{1*}\omega _{1*}\) and \(\kappa ^{*}(s)=\varrho (1, \kappa _{2} ^{*}, \kappa _{3}^{*}, \kappa _{4}^{*}, \kappa _{5}^{*})^{T}e^{i\tau _{1*} \omega _{1*}s}\) be the eigenvector of \(A^{*}(0)\) corresponding to \(-i\tau _{2}^{*}\omega _{2}^{*}\), where
$$\begin{aligned}& \kappa _{2} = \frac{m_{21}}{i\omega _{1*}-m_{22}-n_{22}e^{-i\tau _{1*} \omega _{1*}}-p_{22}e^{-i\tau _{2*}\omega _{1*}}}, \\& \kappa _{3} = \frac{n_{32}e^{-i\tau _{1*}\omega _{1*}}\kappa _{2}+n_{34} \kappa _{4}}{i\omega _{1*}-m_{33}}, \\& \kappa _{4} = \frac{m_{41}(i\omega _{1*}-m_{33})+m_{43}n_{32}e^{-i\tau _{1*}\omega _{1*}}\kappa _{2}}{(i\omega _{1*}-m_{33})(i\omega _{1*}-m_{44}-p _{44}e^{-i\tau _{2*}\omega _{1*}})-m_{43}n_{34}}, \\& \kappa _{5} = \frac{m_{51}+p_{52}e^{-i\tau _{2*}\omega _{1*}}\kappa _{2}+p _{54}e^{-i\tau _{2*}\omega _{1*}}\kappa _{4}}{i\omega _{1*}-m_{55}-q_{55}e ^{-i\tau _{2*}\omega _{1*}}}, \\& \kappa _{2}^{*} = -\frac{i\omega _{1*}+m_{11}+m_{41}\kappa _{4}+m_{51} \kappa _{5}}{m_{21}}, \\& \kappa _{3}^{*} = -\frac{m_{43}\kappa _{4}}{i\omega _{1*}+m_{33}}, \\& \kappa _{4}^{*} = \frac{m_{12}m_{21}+m_{21}p_{22}e^{i\omega _{1*}\tau _{2*}}\kappa _{5}^{*}+\widetilde{p}_{22}(i\omega _{1*}+m_{11}+m_{51} \kappa _{5}^{*})}{(m_{41}\widetilde{m}_{33}\widetilde{p}_{22}+m_{21}m _{43}n_{42}e^{i\tau _{1*}\omega _{1*}})/\widetilde{m}_{33}}, \\& \kappa _{5}^{*} = -\frac{q_{15}e^{i\tau _{3*}\omega _{1*}}}{i\omega _{1*}+m _{55}+q_{55}e^{i\tau _{3*}\omega _{1*}}}, \\& \widetilde{m}_{33} = i\omega _{1*}+m_{33}, \\& \widetilde{p}_{22} = i\omega _{1*}+m_{22}+n_{22}e^{i\tau _{1*}\omega _{1*}}+p_{22}e^{i\tau _{2*}\omega _{1*}}, \end{aligned}$$
and
$$\begin{aligned} \bar{\varrho } =&\bigl[1+\kappa _{2}\bar{\kappa }_{2}^{*}+ \kappa _{3}\bar{ \kappa }_{3}^{*}+\kappa _{4}\bar{\kappa }_{4}^{*}+\kappa _{5} \bar{ \kappa }_{5}^{*}+\tau _{1}^{*}e^{-i\tau _{1}^{*}\omega _{1}^{*}} \kappa _{2}\bigl(n_{22}\bar{\kappa }_{2}^{*}+n_{32} \bar{\kappa }_{3}^{*}\bigr) \\ &{}+\tau _{2}^{*}e^{-i\tau _{2}^{*}\omega _{1}^{*}}\bigl[\kappa _{2}\bigl(p_{22}\bar{ \kappa }_{2}^{*}+p_{52} \bar{\kappa }_{5}^{*}\bigr)+\kappa _{4} \bigl(p_{44}\bar{ \kappa }_{4}^{*}+p_{54} \bar{\kappa }_{5}^{*}\bigr)\bigr] \\ &{}+\tau _{3}^{*}e^{-i\tau _{3}^{*}\omega _{1}^{*}}\kappa _{5} \bigl(q_{15}+q _{55}\bar{\kappa }_{5}^{*} \bigr)\bigr]^{-1}, \end{aligned}$$
which ensures that \(\langle \kappa ^{*}, \kappa \rangle =1\) and \(\langle \kappa ^{*}, \bar{\kappa }\rangle =0\).
In what follows, we can obtain the expressions of \(g_{20}\), \(g_{11}\), \(g_{02}\) and \(g_{21}\) by using the algorithms in [35] and a similar computation process to that in [31, 36, 37, 38]:
$$\begin{aligned}& g_{20} = 2\tau _{1}^{*}\bar{\varrho }\bigl[ \beta _{1}\kappa _{2}\bigl(\bar{\kappa }_{2}^{*}-1 \bigr)-\beta _{2}\kappa _{4}-\beta _{2}\kappa _{3}\kappa _{4}\bar{ \kappa }_{3}^{*}+ \beta _{2}\kappa _{4}\bar{\kappa }_{4}^{*}(1+ \kappa _{3})\bigr], \\& \begin{aligned} g_{11} &= \tau _{1}^{*}\bar{ \varrho }\bigl[\beta _{1}\bigl(\kappa _{2}+\bar{\kappa }_{2}^{*}\bigr) \bigl(\bar{\kappa }_{2}^{*}-1 \bigr)-\beta _{2}\bigl(\kappa _{4}+\bar{\kappa }_{4}^{*}\bigr)-\beta _{2}\bar{\kappa }_{3}^{*}\bigl(\kappa _{3}\bar{\kappa }_{4} ^{*}+\bar{\kappa }_{3}^{*}\kappa _{4}\bigr) \\ &\quad {}+\beta _{2}\bar{\kappa }_{4}^{*}\bigl( \kappa _{4}+\bar{\kappa }_{4}^{*}+ \kappa _{3}\bar{\kappa }_{4}^{*}+\bar{\kappa }_{3}^{*}\kappa _{4}\bigr)\bigr], \end{aligned} \\& g_{02} = 2\tau _{1}^{*}\bar{\varrho }\bigl[ \beta _{1}\bar{\kappa }_{2}\bigl(\bar{ \kappa }_{2}^{*}-1\bigr)-\beta _{2}\bar{\kappa }_{4}-\beta _{2}\bar{\kappa } _{3}\bar{\kappa }_{4}\bar{\kappa }_{3}^{*}+\beta _{2} \bar{\kappa }_{4}\bar{ \kappa }_{4}^{*}(1+\bar{ \kappa }_{3})\bigr], \\& \begin{aligned} g_{21} &=2\tau _{1}^{*}\bar{ \varrho } \biggl[\bigl(\bar{\kappa }_{2}^{*}-1\bigr) \biggl(W_{11}^{(1)}(0)\kappa _{2}+ \frac{1}{2}W_{20}^{(1)}(0)\bar{\kappa }_{2}+W_{11}^{(2)}(0)+\frac{1}{2}W_{20}^{(2)}(0) \biggr) \\ &\quad {}+\beta _{2}\bigl(\bar{\kappa }_{4}^{*}-1 \bigr) \biggl(W_{11}^{(1)}(0)\kappa _{4}+ \frac{1}{2}W_{20}^{(1)}(0)\bar{\kappa }_{4}+W_{11}^{(4)}(0)+ \frac{1}{2}W_{20}^{(4)}(0) \biggr) \\ &\quad {}+\beta _{2}\bigl(\bar{\kappa }_{4}^{*}- \bar{\kappa }_{3}^{*}\bigr) \biggl(W_{11} ^{(3)}(0)\kappa _{4}+\frac{1}{2}W_{20}^{(3)}(0) \bar{\kappa }_{4}+W_{11} ^{(4)}(0)\kappa _{3}+\frac{1}{2}W_{20}^{(4)}(0)\bar{\kappa }_{3}^{*} \biggr) \biggr], \end{aligned} \end{aligned}$$
with
$$\begin{aligned}& W_{20}(\theta ) = \frac{ig_{20}\kappa (0)}{\tau _{1}^{*}\omega _{1}^{*}}e^{i\tau _{1}^{*} \omega _{1}^{*}\theta }+ \frac{i\bar{g}_{02}\bar{\kappa }(0)}{3\tau _{1} ^{*}\omega _{1}^{*}}e^{-i\tau _{1}^{*}\omega _{1}^{*}\theta }+E_{1}e^{2i \tau _{1}^{*}\omega _{1}^{*}\theta }, \\& W_{11}(\theta ) = -\frac{ig_{11}\kappa (0)}{\tau _{1}^{*}\omega _{1} ^{*}}e^{i\tau _{1}^{*}\omega _{1}^{*}\theta }+ \frac{i\bar{g}_{11}\bar{ \kappa }(0)}{\tau _{1}^{*}\omega _{1}^{*}}e^{-i\tau _{1}^{*}\omega _{1} ^{*}\theta }+E_{2}, \end{aligned}$$
where
$$\begin{aligned} E_{1} =&2 \begin{pmatrix} m_{11}^{\prime } &-m_{12} &{0} &-m_{14} &-q_{15}e^{-i\tau _{3}^{*}\omega _{1}^{*}} \\ -m_{21} &m_{22}^{\prime } &{0} &{0} &{0} \\ {0} &-n_{32}e^{-2i\tau _{1}^{*}\omega _{1}^{*}} &m_{33}^{\prime } &-m_{34} &{0} \\ -m_{41} &{0} &-m_{43} &m_{44}^{\prime } &{0} \\ -m_{51} &-p_{52}e^{-2i\tau _{2}^{*}\omega _{1}^{*}} &{0} &-p_{54}e^{-2i\tau _{2}^{*}\omega _{1}^{*}} &m_{55}^{\prime } \end{pmatrix}^{-1} \\ &{}\times \begin{pmatrix} -\beta _{1}\kappa _{2}-\beta _{2}\kappa _{4} \\ \beta _{1}\kappa _{2} \\ -\beta _{2}\kappa _{3}\kappa _{4} \\ \beta _{2}\kappa _{4}(1+\kappa _{3}) \\ {0} \end{pmatrix} \end{aligned}$$
and
$$\begin{aligned} E_{2} =&2 \begin{pmatrix} m_{11} &m_{12} &{0} &m_{14} &q_{15} \\ m_{21} &m_{22}+n_{22}+p_{22} &{0} &{0} &{0} \\ {0} &n_{32} &m_{33} &m_{34} &{0} \\ m_{41} &{0} &m_{43} &m_{44}+p_{44} &{0} \\ m_{51} &p_{52} &{0} &p_{54} &m_{55}+q_{55} \end{pmatrix}^{-1} \\ &{}\times \begin{pmatrix} -\beta _{1}(\kappa _{2}+\bar{\kappa }_{2})-\beta _{2}( \kappa _{4}+\bar{\kappa }_{4}) \\ \beta _{1}(\kappa _{2}+\bar{\kappa }_{2}) \\ -\beta _{2}(\kappa _{3}\bar{\kappa }_{4}+\bar{\kappa } _{3}\kappa _{4}) \\ \beta _{2}(\kappa _{4}+\bar{\kappa }_{4})+\beta _{2}(\kappa _{3}\bar{ \kappa }_{4}+\bar{\kappa }_{3}\kappa _{4}) \\ {0} \end{pmatrix}, \end{aligned}$$
with
$$\begin{aligned}& m_{11}^{\prime } = 2i\omega _{1}^{*}-m_{11}, \\& m_{22}^{\prime } = 2i\omega _{1}^{*}-m_{22}-n_{22}e^{-2i\tau _{1}^{*} \omega _{1}^{*}}-p_{22}e^{-2i\tau _{2}^{*}\omega _{1}^{*}}, \\& m_{33}^{\prime } = 2i\omega _{1}^{*}-m_{33}, \\& m_{44}^{\prime } = 2i\omega _{1}^{*}-m_{44}-p_{44}e^{-2i\tau _{2}^{*} \omega _{1}^{*}}, \\& m_{55}^{\prime } = 2i\omega _{1}^{*}-m_{55}-q_{55}e^{-i\tau _{3}^{*} \omega _{1}^{*}}. \end{aligned}$$
Thus, we can compute the following values:
$$ \begin{aligned} &C_{1}(0)=\frac{i}{2\tau _{1}^{*}\omega _{1}^{*}} \biggl(g_{11}g_{20}-2 \vert g _{11} \vert ^{2}-\frac{ \vert g_{02} \vert ^{2}}{3} \biggr)+\frac{g_{21}}{2}, \\ &\mu _{2} =-\frac{\operatorname{Re}\{C_{1}(0)\}}{\operatorname{Re}\{\lambda '(\tau _{1} ^{*})\}}, \\ &\beta _{2}=2{\operatorname{Re}\bigl\{ C_{1}(0)\bigr\} }, \\ &T_{2}=-\frac{\operatorname{Im}\{C_{1}(0)\}+\mu _{2}\operatorname{Im}\{\lambda '(\tau _{1}^{*})\}}{\tau _{1}^{*}\omega _{1}^{*}}. \end{aligned} $$
(42)

Thus, we can obtain the following results according to the discussion of the properties of Hopf bifurcating periodic solutions of dynamical system in [23].

Theorem 5

For system (2), if\(\mu _{2}>0\) (\(\mu _{2}<0\)), then the Hopf bifurcation is supercritical (subcritical); if\(\beta _{2}<0\) (\(\beta _{2}>0\)), then the bifurcating periodic solutions are stable (unstable); if\(T_{2}>0\) (\(T_{2}<0\)), then the periods of the bifurcating periodic solutions increase (decrease).

4 Numerical simulations

In this section, we shall give some numerical simulations to validate the theoretical results obtained in the previous section. Choosing \(\mu =0.06\), \(N=100\), \(\beta _{1}=0.1\), \(\beta _{2}=0.015\), \(\varepsilon =0.07\), \(\eta =0.3\), \(\alpha =0.1\), \(\rho =0.02\), \(\gamma =0.08\). Then we get the following specific model:
$$ \textstyle\begin{cases} \frac{dS(t)}{dt} =6-0.1 S(t)E(t)-0.015S(t)A(t)-0.13 S(t)+0.3 R(t-\tau _{3}), \\ \frac{dE(t)}{dt} =0.1S(t)E(t)-0.06 E(t)-0.1 E(t-\tau _{1})+0.02 E(t- \tau _{2}), \\ \frac{dI(t)}{dt} =0.1 E(t-\tau _{1})-0.06 I(t)-0.015I(t)A(t), \\ \frac{dA(t)}{dt} =0.015S(t)A(t)+0.015I(t)A(t)-0.06 A(t)-0.08 A(t-\tau _{2}), \\ \frac{dR(t)}{dt} =0.08 A(t-\tau _{2})+0.02 E(t-\tau _{2})+0.07 S(t)-0.06 R(t)-0.3 R(t-\tau _{3}), \end{cases} $$
(43)
which satisfies the condition (\(C_{1}\)). By computing, we obtain the unique endemic equilibrium \(D_{*}(1.8, 44.5473, 7.5333, 35.4424, 10.6964)\) and the condition (\(C_{2}\)) is satisfied.
First, by taking \(\tau _{1}>0\) (\(\tau _{2}=\tau _{3}=0\)), \(\tau _{2}>0\) (\(\tau _{1}=\tau _{3}=0\)), \(\tau _{3}>0\) (\(\tau _{1}=\tau _{2}=0\)) and \(\tau _{1}>0\) (\(\tau _{2}=3.75\in (0, \tau _{20})\) and \(\tau _{3}=2.35 \in (0, \tau _{30})\)), respectively, we obtain \(\omega _{1}=1.9353\) and \(\tau _{10}=25.1722\), \(\omega _{2}=0.6372\) and \(\tau _{20}=30.0105\), \(\omega _{3}=1.4460\) and \(\tau _{30}=6.1042\), \(\omega _{1}^{*}=3.2659\) and \(\tau _{1}^{*}=6.6884\). The unique endemic equilibrium \(D_{*}(1.8, 44.5473, 7.5333, 35.4424, 10.6964)\) is seen to be locally asymptotically stable for less values of the delays. With the increased values of delays, a Hopf bifurcation occurs at the corresponding critical values of the delays. The bifurcation phenomena of model (43) are shown in Figs. 25. Also, by some complex computations, we obtain \(C_{1}(0)=-29.6058+17.2864i\), \(\mu _{2}=30.0049>0\), \(\beta _{2}=-59.2116\) and \(T_{2}=-0.8610<0\). Thus, we can conclude that the Hopf bifurcation is supercritical, and the periodic solutions are stable and decrease.
Figure 2

Bifurcation diagram with respectto \(\tau_{1}\)

Figure 3

Bifurcation diagram with respect to \(\tau_{2}\)

Figure 4

Bifurcation diagram with respect to \(\tau_{3}\)

Figure 5

Bifurcation diagram with respect to \(\tau_{1}\) when \(\tau_{2} = 3.75\) and \(\tau_{3} = 2.35\)

5 Conclusions

In this paper, a delayed e-SEIARS model for point-to-group worm propagation is proposed by incorporating the latent period delay, the delay due to the period that the anti-virus software uses to clean the worm and the temporary immunization delay into the model formulated in the literature [15]. The model not only takes the time delays into account, but also takes two important network environment factors into account, namely point-to-group worm propagation and benign worms.

We mainly focus on effect of the time delays on the proposed model. Local stability and the existence of Hopf bifurcation are discussed by taking different combinations of the time delays as bifurcation parameter. Specially, properties of the Hopf bifurcation are investigated. It is found that when the values of the time delays are below the critical value, the model is locally asymptotically stable. In this case, the worms in model (2) can be predicted and controlled. However, the propagation of the worms will be out of control when the values of the time delays pass through the corresponding critical values. It should be pointed out that our work is only restricted to a theoretical analysis of the model. It may be necessary to make experimental studies in real-world networks in the near future, and this is left for our next study.

Notes

Availability of data and materials

All of the authors declare that all the data can be accessed in our manuscript in the numerical simulation section.

Authors’ contributions

All authors read and approved the final manuscript.

Funding

This research was supported by Project of Support Program for Excellent Youth Talent in Colleges and Universities of Anhui Province (No. gxyqZD2018044) and Natural Science Foundation of Anhui Province (Nos. 1608085QF145, 1608085QF151).

Competing interests

The authors declare that there is no conflict of interests.

References

  1. 1.
    Hosseini, S., Azgomi, M.A.: The dynamics of an SEIRS-QV malware propagation model in heterogeneous networks. Physica A 512, 803–817 (2018) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Guillen, J.D.H., Rey, A.M., Encinas, L.H.: Study of the stability of a SEIRS model for computer worm propagation. Physica A 479, 411–421 (2017) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, L.J., Hattaf, K., Sun, J.T.: Optimal control of a delayed SLBS computer virus model. Physica A 427, 224–250 (2015) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Feng, L.P., Song, L.P., Zhao, Q.S., Wang, H.B.: Modeling and stability analysis of worm propagation in wireless sensor network. Math. Probl. Eng. 2015, Article ID 129598 (2015) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Keshri, N., Mishra, B.K.: Two time-delay dynamic model on the transmission of malicious signals in wireless sensor network. Chaos Solitons Fractals 68, 151–158 (2014) CrossRefGoogle Scholar
  6. 6.
    Zhang, Z.Z., Yang, H.Z.: Stability and Hopf bifurcation in a delayed SEIRS worm model in computer network. Math. Probl. Eng. 2013, Article ID 319174 (2013) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Mishra, B.K., Pandey, S.K.: Dynamic model of worms with vertical transmission in computer network. Appl. Math. Comput. 217, 8438–8446 (2011) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Mishra, B.K., Pandey, S.K.: Dynamic model of worm propagation in computer network. Appl. Math. Model. 38, 2173–2179 (2014) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Xiao, X., Fu, P., Dou, C.S., Li, Q., Hu, G.W., Xia, S.T.: Design and analysis of SEIQR worm propagation model in mobile Internet. Commun. Nonlinear Sci. Numer. Simul. 43, 341–350 (2017) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Singh, A., Awasthi, A.K., Singh, K., Srivastava, P.K.: Modeling and analysis of worm propagation in wireless sensor networks. Wirel. Pers. Commun. 98, 2535–2551 (2018) CrossRefGoogle Scholar
  11. 11.
    Nwokoye, C.H., Ozoegwu, G.C., Ejiofor, V.E.: Pre-quarantine approach for defense against propagation of malicious objects in networks. Int. J. Comput. Netw. Inf. Secur. 2, 43–52 (2017) Google Scholar
  12. 12.
    Nwokoye, C.H., Ejiofor, V.E., Orji, R.: Investigating the effect of uniform random distribution of nodes in wireless sensor networks using an epidemic worm model. In: International Conference on Computing Research and Innovations, ACM, Ibadan, Nigeria, pp. 58–63 (2016) Google Scholar
  13. 13.
    Dong, T., Wang, A.J., Liao, X.F.: Impact of discontinuous antivirus strategy in a computer virus model with the point to group. Appl. Math. Model. 40, 3400–3409 (2016) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Batistela, C.M., Piqueira, J.R.C.: SIRA computer viruses propagation model: mortality and robustness. Int. J. Appl. Comput. Math. 2018, 128 (2018) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, F.W., Zhang, Y.K., Wang, C.G., Ma, J.F.: Stability analysis of an e-SEIAR model with point-to-group worm propagation. Commun. Nonlinear Sci. Numer. Simul. 20, 897–904 (2015) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, L.S., Xu, R., Feng, G.H.: Modelling and analysis of an eco-epidemiological model with time delay and stage structure. J. Appl. Math. Comput. 50, 175–197 (2016) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang, Z.Z., Wan, A.Y.: Bifurcation analysis of a three-species ecological system with time delay and harvesting. Adv. Differ. Equ. 2017, 342 (2017) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhang, Z.Z., Song, L.M.: Dynamics of a delayed worm propagation model with quarantine. Adv. Differ. Equ. 2017, 155 (2017) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Meng, X.Y., Wang, J.G.: Analysis of a delayed diffusive model with Beddington-DeAngelis functional response. Int. J. Biomath. (2019).  https://doi.org/10.1142/S1793524519500475(2019) CrossRefGoogle Scholar
  20. 20.
    Bai, Y.Z., Li, Y.Y.: Stability and Hopf bifurcation for a stage-structured predator–prey model incorporating refuge for prey and additional food for predator. Adv. Differ. Equ. 2019, 42 (2019) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yu, X.X., Wang, Q.R., Bai, Y.Z.: Permanence and almost periodic solutions for N-species non-autonomous Lotka–Volterra competitive systems with delays and impulsive perturbations on time scales. Complexity 2018, Article ID 2658745 (2018) zbMATHGoogle Scholar
  22. 22.
    Guo, Y.X., Ji, N.N., Niu, B.: Hopf bifurcation analysis in a predator–prey model with time delay and food subsidies. Adv. Differ. Equ. 2019, 99 (2019) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rakkiyapan, R., Udhayakumar, K., Velmurugan, G., Cao, J.D., Alsaedi, A.: Stability and Hopf bifurcation analysis of fractional-order complex-valued neural networks with time delays. Adv. Differ. Equ. 2017, 225 (2017) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xu, C.J., Liao, M.X., Li, P.L., Guo, Y.: Bifurcation analysis for simplified five-neuron bidirectional associative memory neural networks with four delays. Neural Process. Lett. (2019).  https://doi.org/10.1007/s11063-019-10006-y CrossRefGoogle Scholar
  25. 25.
    Xu, C.J.: Local and global Hopf bifurcation analysis on simplified bidirectional associative memory neural networks with multiple delays. Math. Comput. Simul. 149, 69–90 (2018) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Xu, C.J., Zhang, Q.M., Wu, Y.S.: Bifurcation analysis in a three-neuron artificial neural network model with distributed delays. Neural Process. Lett. 44, 343–373 (2016) CrossRefGoogle Scholar
  27. 27.
    Sounvoravong, B., Guo, S.J., Bai, Y.Z.: Bifurcation and stability of a diffusive SIRS epidemic model with time delay. Electron. J. Differ. Equ. 2019, 45 (2019) CrossRefGoogle Scholar
  28. 28.
    Liu, J., Wang, K.: Hopf bifurcation of a delayed SIQR epidemic model with constant input and nonlinear incidence rate. Adv. Differ. Equ. 2016, 168 (2016) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sirijampa, A., Chinviriyasit, S., Chinviriyasit, W.: Hopf bifurcation analysis of a delayed SEIR epidemic model with infectious force in latent and infected period. Adv. Differ. Equ. 2018, 348 (2018) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Liu, J., Wang, K.: Dynamics of an epidemic model with delays and stage structure. Comput. Appl. Math. 37, 2294–2308 (2018) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhao, T., Bi, D.J.: Hopf bifurcation of a computer virus spreading model in the network with limited anti-virus ability. Adv. Differ. Equ. 2017, 183 (2017) MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhang, Z.Z., Wang, Y.G.: Qualitative analysis for a delayed epidemic model with latent and breaking-out over the Internet. Adv. Differ. Equ. 2017, 31 (2017) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ren, J.G., Yang, X.F., Yang, L.X., Xu, Y.H., Yang, F.Z.: A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 45, 74–79 (2012) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhao, T., Wei, S.L., Bi, D.J.: Hopf bifurcation of a computer virus propagation model with two delays and infectivity in latent period. Syst. Sci. Control Eng. 6, 90–101 (2018) CrossRefGoogle Scholar
  35. 35.
    Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981) zbMATHGoogle Scholar
  36. 36.
    Xu, C.J.: Delay-induced oscillations in a competitor–competitor–mutualist Lotka–Volterra model. Complexity 2017, Article ID 2578043 (2017) MathSciNetzbMATHGoogle Scholar
  37. 37.
    Xu, C.J., Wu, Y.S.: Bifurcation and control of chaos in a chemical system. Appl. Math. Model. 29, 2295–2310 (2015) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Xu, C.J., Li, P.L.: Dynamics in four-neuron bidirectional associative memory networks with inertia and multiple delays. Cogn. Comput. 8, 78–104 (2016) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Management Science and EngineeringAnhui University of Finance and EconomicsBengbuChina

Personalised recommendations