Advertisement

\((h-m)\)-convex functions and associated fractional Hadamard and Fejér–Hadamard inequalities via an extended generalized Mittag-Leffler function

  • Shin Min Kang
  • Ghulam Farid
  • Waqas NazeerEmail author
  • Sajid Mehmood
Open Access
Research
  • 155 Downloads

Abstract

The aim of this paper is to present the Hadamard and the Fejér–Hadamard integral inequalities for \((h-m)\)-convex functions due to an extended generalized Mittag-Leffler function. These results contain several fractional integral inequalities for the well-known fractional integral operators. Also results for the generalized Mittag-Leffler function are mentioned.

Keywords

Riemann–Lioville fractional integrals Mittag-Leffler function Fractional integrals \((h-m)\)-convex functions 

MSC

26B25 26A33 26A51 33E12 

1 Introduction and preliminaries

Convexity is very important in the field of mathematical inequalities. It is a basic concept in mathematics, its extensions and generalizations have been defined in various ways by using the different techniques. For example one of them is \((h-m)\)-convexity, which is a generalization of convexity that contains h-convexity, m-convexity, s-convexity defined on the right half of the real line including zero (see [12, 23] and the references therein).

Definition 1

Let \(J\subseteq \mathbb{R}\) be an interval containing \((0,1)\) and let \(h : J\rightarrow \mathbb{R}\) be a non-negative function. We say that \(f :[0,b]\rightarrow \mathbb{R}\) is a \((h-m)\)-convex function, if f is non-negative and, for all \(x,y\in [0,b]\), \(m\in [0,1]\) and \(\alpha \in (0,1)\), one has
$$ f\bigl(\alpha x+m(1-\alpha )y\bigr)\leq h(\alpha )f(x)+mh(1-\alpha )f(y). $$

For suitable choices of h and m, the class of \((h-m)\)-convex functions is reduced to different known classes of convex and related functions defined on \([0,b]\) given in the following remark.

Remark 1

  1. (i)

    If \(m=1\), then we get an h-convex function.

     
  2. (ii)

    If \(h(\alpha )=\alpha \), then we get an m-convex function.

     
  3. (iii)

    If \(h(\alpha )=\alpha \) and \(m=1\), then we get a convex function.

     
  4. (iv)

    If \(h(\alpha )=1\) and \(m=1\), then we get a p-function.

     
  5. (v)

    If \(h(\alpha )=\alpha ^{s}\) and \(m=1\), then we get an s-convex function in the second sense.

     
  6. (vi)

    If \(h(\alpha )=\frac{1}{\alpha }\) and \(m=1\), then we get a Godunova–Levin function.

     
  7. (vii)

    If \(h(\alpha )=\frac{1}{\alpha ^{s}}\) and \(m=1\), then we get an s-Godunova–Levin function of the second kind.

     

Convex functions are equivalently defined by the well-known Hadamard inequality stated as follows.

Theorem 1.1

Let\(f:[a,b]\rightarrow \mathbb{R}\)be a convex function such that\(a< b\), then the following inequality holds:
$$\begin{aligned} f \biggl(\frac{a+b}{2} \biggr)\leq \frac{1}{b-a} \int ^{b}_{a}f(x)\,dx \leq \frac{f(a)+f(b)}{2}. \end{aligned}$$
(1)

The Fejér–Hadamard inequality is a weighted version of the Hadamard inequality established by Fejér in [8].

Theorem 1.2

Let\(f:[a, b]\rightarrow \mathbb{R}\)be a convex function and\(g:[a, b]\rightarrow \mathbb{R}\)be a non-negative, integrable and symmetric to\(\frac{a+b}{2}\). Then the following inequality holds:
$$\begin{aligned} &f \biggl(\frac{a+b}{2} \biggr) \int _{a}^{b}g(x)\,dx\leq \int _{a}^{b}f(x)g(x)\,dx \leq \frac{f(a)+f(b)}{2} \int _{a}^{b}g(x)\,dx. \end{aligned}$$
(2)

Many researchers are continuously working on inequalities (1) and (2), and they have produced very interesting results for convex and related functions; for details see [3, 4, 5, 6, 7, 12, 16, 18]. In this paper, we wish to prove the Hadamard and the Fejér–Hadamard type integral inequalities for \((h-m)\)-convex functions via an extended generalized Mittag-Leffler function.

In [1], M. Andrić et al. defined the extended generalized Mittag-Leffler function \(E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c}(\cdot;p)\) as follows:

Definition 2

Let \(\mu ,\alpha ,l,\gamma ,c\in \mathbb{C}\), \(\Re (\mu ),\Re (\alpha ),\Re (l)>0\), \(\Re (c)>\Re (\gamma )>0\) with \(p\geq 0\), \(\delta >0\) and \(0< k\leq \delta +\Re (\mu )\). Then the extended generalized Mittag-Leffler function \(E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c}(t;p)\) is defined by
$$ E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c}(t;p)= \sum _{n=0}^{\infty }\frac{ \beta _{p}(\gamma +nk,c-\gamma )}{\beta (\gamma ,c-\gamma )} \frac{(c)_{nk}}{ \varGamma (\mu n +\alpha )} \frac{t^{n}}{(l)_{n \delta }}, $$
(3)
where \(\beta _{p}\) is the generalized beta function defined by
$$ \beta _{p}(x,y) = \int _{0}^{1}t^{x-1}(1-t)^{y-1}e^{-\frac{p}{t(1-t)}}\,dt $$
and \((c)_{nk}\) is the Pochhammer symbol defined by \((c)_{nk}=\frac{ \varGamma (c+nk)}{\varGamma (c)}\).

Remark 2

Equation (3) is a generalization of the following functions:
  1. (i)

    setting \(p=0\), it reduces to the function \(E_{\mu ,\alpha ,l}^{ \gamma ,\delta ,k,c}(t)\) due to Salim et al. defined in [17],

     
  2. (ii)

    setting \(l=\delta =1\), it reduces to the function \(E_{\mu , \alpha }^{\gamma ,k,c}(t;p)\) defined by Rahman et al. in [15],

     
  3. (iii)

    setting \(p=0\) and \(l=\delta =1\), it reduces to the function \(E_{\mu ,\alpha }^{\gamma ,k}(t)\) due to Shukla et al. defined in [20]; see also [21],

     
  4. (iv)

    setting \(p=0\) and \(l=\delta =k=1\), it reduces to the Prabhakar function \(E_{\mu ,\alpha }^{\gamma }(t)\) defined in [14].

     

For more information related to the Mittag-Leffler function we suggest [2, 9]. The corresponding left- and right-sided generalized fractional integral operators \(\epsilon _{\mu ,\alpha ,l,\omega ,a ^{+}}^{\gamma ,\delta ,k,c} \) and \(\epsilon _{\mu ,\alpha ,l,\omega ,b ^{-}}^{\gamma ,\delta ,k,c}\) are defined as follows.

Definition 3

([1])

Let \(\omega ,\mu ,\alpha ,l,\gamma ,c\in \mathbb{C}\), \(\Re (\mu ),\Re (\alpha ),\Re (l)>0\), \(\Re (c)>\Re (\gamma )>0\) with \(p\geq 0\), \(\delta >0\) and \(0< k\leq \delta +\Re (\mu )\). Let \(f\in L_{1}[a,b]\) and \(x\in [a,b]\). Then the generalized fractional integral operators \(\epsilon _{\mu ,\alpha ,l,\omega ,a^{+}}^{\gamma , \delta ,k,c}f \) and \(\epsilon _{\mu ,\alpha ,l,\omega ,b^{-}}^{\gamma ,\delta ,k,c}f\) are defined by
$$ \bigl( \epsilon _{\mu ,\alpha ,l,\omega ,a^{+}}^{\gamma ,\delta ,k,c}f \bigr) (x;p)= \int _{a}^{x}(x-t)^{\alpha -1}E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega (x-t)^{\mu };p\bigr)f(t)\,dt $$
(4)
and
$$ \bigl( \epsilon _{\mu ,\alpha ,l,\omega ,b^{-}}^{\gamma ,\delta ,k,c}f \bigr) (x;p)= \int _{x}^{b}(t-x)^{\alpha -1}E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega (t-x)^{\mu };p\bigr)f(t)\,dt. $$
(5)

Remark 3

Equations (4) and (5) are the generalization of the following fractional integral operators:
  1. (i)

    setting \(p=0\), it reduces to the fractional integral operators defined by Salim et al. in [17],

     
  2. (ii)

    setting \(l=\delta =1\), it reduces to the fractional integral operators defined by Rahman et al. in [15],

     
  3. (iii)

    setting \(p=0\) and \(l=\delta =1\), it reduces to the fractional integral operators defined by Srivastava et al. in [21],

     
  4. (iv)

    setting \(p=0\) and \(l=\delta =k=1\), it reduces to the fractional integral operators defined by Prabhakar in [14],

     
  5. (v)

    setting \(p=\omega =0\), it reduces to the right-sided and left-sided Riemann–Liouville fractional integrals.

     
Let \(f\in L_{1}[a,b]\). Then the left- and right-sided Riemann–Liouville fractional integrals \(I^{\alpha }_{a^{+}}f\) and \(I^{\alpha }_{b^{-}}f\) of order \(\alpha \in \mathbb{R}\)\((\alpha >0)\) are defined by
$$ I^{\alpha }_{a^{+}}f(x):= \frac{1}{\varGamma (\alpha )} \int _{a}^{x}\frac{f(t)\,dt}{(x-t)^{1- \alpha }}, \quad x>a, $$
and
$$ I^{\alpha }_{b^{-}}f(x):= \frac{1}{\varGamma (\alpha )} \int _{x}^{b}\frac{f(t)\,dt}{(t-x)^{1- \alpha }}, \quad x< b, $$
respectively. Here \(\varGamma (\alpha )\) is the Euler Gamma function and \(I^{0}_{a^{+}}f(x) = I^{0}_{b^{-}}f(x)=f(x)\).

Fractional integral inequalities are useful in establishing the uniqueness of solutions of fractional differential equations. A lot of work dedicated to fractional calculus reflects its importance in almost all fields of mathematics, physics, information technology and other sciences [3, 4, 6, 7, 10, 11, 13, 22]. In the upcoming section, first we prove the Hadamard inequality for \((h-m)\)-convex functions via extended generalized fractional integral operators defined in (4) and (5). Then the Fejér–Hadamard inequality for these operators is obtained. Furthermore, the results for fractional integral operators associated with (4), (5) (see Remark 3), and several kinds of convexity (see Remark 1) are highlighted.

2 Main results

First we present the extended generalized fractional integral Hadamard inequality for \((h-m)\)-convex functions.

Theorem 2.1

Let\(f: [a,b]\subset (0,\infty )\to \mathbb{R}\)be a function such that\(f\in L_{1}[a,b]\)with\(a< b\)and\(m\in (0,1]\). Iffis\((h-m)\)-convex and\(h\in L_{1}[0,1]\), then the following inequalities for extended generalized fractional integral operators, (4) and (5), hold:
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \bigl(\epsilon _{\mu ,\alpha ,l,\omega ^{o},a ^{+}}^{\gamma ,\delta ,k,c}1 \bigr) (mb;p) \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[m^{\alpha +1} \bigl(\epsilon _{ \mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}^{\gamma ,\delta ,k,c}f \bigr) \biggl(\frac{a}{m};p \biggr)+ \bigl(\epsilon _{\mu ,\alpha ,l,\omega ^{o},a ^{+}}^{\gamma ,\delta ,k,c}f \bigr) (mb;p) \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) (bm-a)^{\alpha } \biggl\lbrace m \biggl[mf \biggl( \frac{a}{m^{2}} \biggr) +f(b) \biggr] \bigl( \epsilon _{ \mu ,\alpha ,l,\omega ,0^{+}}^{\gamma ,\delta ,k,c}h \bigr) (1;p) \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \bigl(\epsilon _{\mu ,\alpha ,l,\omega ,1^{-}} ^{\gamma ,\delta ,k,c}h \bigr) (0;p) \biggr\rbrace , \end{aligned}$$
(6)
where\(\omega ^{o}=\frac{\omega }{(bm-a)^{\mu }}\).

Proof

Since f is \((h-m)\)-convex, we have
$$ f \biggl( \frac{xm+y}{2} \biggr) \leq h \biggl( \frac{1}{2} \biggr) \bigl(mf(x)+f(y)\bigr). $$
(7)
Putting in the above \(x=(1-t)\frac{a}{m}+tb\) and \(y=m(1-t)b+ta\), we get
$$ f \biggl( \frac{bm+a}{2} \biggr)\leq h \biggl( \frac{1}{2} \biggr) \biggl(mf\biggl((1-t) \frac{a}{m}+tb\biggr)+f \bigl(m(1-t)b+ta\bigr)\biggr). $$
(8)
Multiplying (8) by \(t^{\alpha -1}E_{\mu ,\alpha ,l}^{\gamma , \delta ,k,c}(\omega t^{\mu };p)\) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \int _{0}^{1}t^{\alpha -1}E_{\mu , \alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr)\,dt \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E _{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr) mf \biggl( (1-t) \frac{a}{m}+tb \biggr)\,dt \\ &\qquad{} + \int _{0}^{1}t^{\alpha -1}E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr)f\bigl(m(1-t)b+ta\bigr)\,dt \biggr]. \end{aligned}$$
Putting in the above \(x=(1-t)\frac{a}{m}+tb\) and \(y=m(1-t)b+ta\), then, by using (4) and (5), we get
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \bigl(\epsilon _{\mu ,\alpha ,l,\omega ^{o},a ^{+}}^{\gamma ,\delta ,k,c}1 \bigr) (mb;p) \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[m^{\alpha +1} \bigl(\epsilon _{ \mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}^{\gamma ,\delta ,k,c}f \bigr) \biggl(\frac{a}{m};p \biggr)+ \bigl(\epsilon _{\mu ,\alpha ,l,\omega ^{o},a^{+}} ^{\gamma ,\delta ,k,c}f \bigr) (mb;p) \biggr]. \end{aligned}$$
(9)
Again by using \((h-m)\)-convexity of f, we have
$$\begin{aligned} &mf \biggl( (1-t)\frac{a}{m}+tb \biggr) +f\bigl(m(1-t)b+ta \bigr) \\ &\quad \leq m^{2}h(1-t)f \biggl( \frac{a}{m^{2}} \biggr) +mh(t)f(b)+mh(1-t)f(b)+h(t)f(a) \\ &\quad =m \biggl[ mf \biggl( \frac{a}{m^{2}} \biggr) +f(b) \biggr]h(1-t)+ \bigl[ mf(b)+f(a) \bigr]h(t). \end{aligned}$$
(10)
Multiplying (10) by \(h ( \frac{1}{2} ) t^{\alpha -1}E _{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c}(\omega t^{\mu };p)\) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E_{ \mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr)mf \biggl( (1-t) \frac{a}{m}+tb \biggr)\,dt \\ &\qquad {} + \int _{0}^{1}t^{\alpha -1}E_{\mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr)f\bigl(m(1-t)b+ta\bigr)\,dt \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \biggl\lbrace m \biggl[ mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \int _{0}^{1}t^{\alpha -1}E_{\mu ,\alpha ,l} ^{\gamma ,\delta ,k,c}\bigl(\omega t^{\mu };p\bigr)h(1-t)\,dt \\ &\qquad {} + \bigl[ mf(b)+f(a) \bigr] \int _{0}^{1}t^{\alpha -1}E_{ \mu ,\alpha ,l}^{\gamma ,\delta ,k,c} \bigl(\omega t^{\mu };p\bigr)h(t)\,dt \biggr\rbrace . \end{aligned}$$
By using (4) and (5), we get
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) \biggl[m^{\alpha +1} \bigl(\epsilon _{\mu , \alpha ,l,\omega ^{o}m^{\mu },b^{-}}^{\gamma ,\delta ,k,c}f \bigr) \biggl(\frac{a}{m};p \biggr)+ \bigl( \epsilon _{\mu ,\alpha ,l,\omega ^{o},a ^{+}}^{\gamma ,\delta ,k,c}f \bigr) (mb;p) \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) (bm-a)^{\alpha } \biggl\lbrace m \biggl[mf \biggl( \frac{a}{m^{2}} \biggr) +f(b) \biggr] \bigl( \epsilon _{ \mu ,\alpha ,l,\omega ,0^{+}}^{\gamma ,\delta ,k,c}h \bigr) (1;p) \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \bigl(\epsilon _{\mu ,\alpha ,l,\omega ,1^{-}} ^{\gamma ,\delta ,k,c}h \bigr) (0;p) \biggr\rbrace . \end{aligned}$$
From the above inequality and (9), we get the required inequality (6). □

Several known results are special cases of the above generalized fractional Hadamard inequality comprised in the following remark.

Remark 4

  1. (i)

    If we put \(p=0\) in (6), then [16, Theorem 2.1] is obtained.

     
  2. (ii)

    If we put \(h(t)=t\), \(m=1\) and \(p=0\) in (6), then [5, Theorem 2.1] is obtained.

     
  3. (iii)

    If we put \(h(t)=t\) and \(p=0\) in (6), then [6, Theorem 3] is obtained.

     
  4. (iv)

    If we put \(h(t)=t\) and \(p=\omega =0\) in (6), then [7, Theorem 2.1] is obtained.

     
  5. (v)

    If we put \(h(t)=t\), \(m=1\) and \(p=\omega =0\) in (6), then [18, Theorem 2] is obtained.

     
  6. (vi)

    If we put \(h(t)=t\), \(m=1\), \(\alpha =1\) and \(p=\omega =0\) in (6), then the Hadamard inequality is obtained.

     

In the following we prove an analog version of the Hadamard inequality for generalized fractional integrals.

Theorem 2.2

Let\(f: [a,b]\subset (0,\infty )\to \mathbb{R}\)be a function such that\(f\in L_{1}[a,b]\)with\(a< b\)and\(m\in (0,1]\). Iffis\((h-m)\)-convex, then the following inequalities for extended generalized fractional integral operators, (4) and (5), hold:
$$\begin{aligned} &f \biggl( \frac{a+bm}{2} \biggr) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}2^{\mu }, ( \frac{a+bm}{2} ) ^{+}}1 \bigr) (mb;p) \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[ \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}2^{\mu }, ( \frac{a+bm}{2} ) ^{+}}f \bigr) (mb;p)+m^{\alpha +1} \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}(2m)^{\mu }, ( \frac{a+bm}{2m} ) ^{-}}f \bigr) \biggl(\frac{a}{m};p \biggr) \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \frac{(bm-a)^{\alpha }}{2^{\alpha }} \biggl\lbrace m \biggl[ mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \int _{0}^{1}t^{\alpha -1}E^{\gamma , \delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{2-t}{2} \biggr) \,dt \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{t}{2} \biggr) \,dt \biggr\rbrace , \end{aligned}$$
(11)
where\(\omega ^{o}=\frac{\omega }{(bm-a)^{\mu }}\).

Proof

Putting \(x=\frac{t}{2}b+\frac{(2-t)}{2}\frac{a}{m}\) and \(y= \frac{t}{2}a+m\frac{(2-t)}{2}b\) in (7), we get
$$\begin{aligned} f \biggl( \frac{a+bm}{2} \biggr) \leq h \biggl( \frac{1}{2} \biggr) \biggl[ mf \biggl( \frac{t}{2}b+ \frac{(2-t)}{2}\frac{a}{m} \biggr)+f \biggl( \frac{t}{2}a+m \frac{(2-t)}{2}b \biggr) \biggr]. \end{aligned}$$
(12)
Multiplying (12) by \(t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{ \mu ,\alpha ,l}(\omega t^{\mu };p)\) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &f \biggl( \frac{a+bm}{2} \biggr) \int _{0}^{1}t^{\alpha -1}E^{\gamma , \delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)\,dt \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E ^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr) mf \biggl( \frac{t}{2}a+m \frac{(2-t)}{2}b \biggr)\,dt \\ &\qquad {} + \int _{0}^{1}t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{\mu , \alpha ,l} \bigl(\omega t^{\mu };p\bigr)f \biggl( \frac{t}{2}b+ \frac{(2-t)}{2} \frac{a}{m} \biggr) \,dt \biggr]. \end{aligned}$$
Putting \(x=\frac{t}{2}b+\frac{(2-t)}{2}\frac{a}{m}\) and \(y= \frac{t}{2}a+m\frac{(2-t)}{2}b\), then, by using (4) and (5), we get
$$\begin{aligned} &f \biggl( \frac{a+bm}{2} \biggr) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}2^{\mu }, ( \frac{a+bm}{2} ) ^{+}}1 \bigr) (mb;p) \\ &\quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[ \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}2^{\mu }, ( \frac{a+bm}{2} ) ^{+}}f \bigr) (mb;p)+m^{\alpha +1} \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}(2m)^{\mu }, ( \frac{a+bm}{2m} ) ^{-}}f \bigr) \biggl(\frac{a}{m};p \biggr) \biggr]. \end{aligned}$$
(13)
Again by using \((h-m)\)-convexity of f, we have
$$\begin{aligned} \begin{aligned}[b] &f \biggl( \frac{t}{2}a+m\frac{(2-t)}{2}b \biggr) +mf \biggl( \frac{t}{2}b+\frac{(2-t)}{2}\frac{a}{m} \biggr) \\ &\quad \leq h \biggl( \frac{t}{2} \biggr)f(a)+mh \biggl( \frac{2-t}{2} \biggr)f(b)+mh \biggl( \frac{t}{2} \biggr) f(b)+ m^{2}h \biggl( \frac{2-t}{2} \biggr) f \biggl( \frac{a}{m^{2}} \biggr) \\ &\quad =m \biggl[ mf \biggl( \frac{a}{m^{2}} \biggr) +f(b) \biggr]h \biggl( \frac{2-t}{2} \biggr)+ \bigl[ mf(b)+f(a) \bigr]h \biggl( \frac{t}{2} \biggr). \end{aligned} \end{aligned}$$
(14)
Multiplying (14) by \(h ( \frac{1}{2} )t^{\alpha -1}E ^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l}(\omega t^{\mu };p)\) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)f \biggl( \frac{t}{2}a+m \frac{(2-t)}{2}b \biggr)\,dt \\ &\qquad {}+ \int _{0}^{1}t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{\mu , \alpha ,l} \bigl(\omega t^{\mu };p\bigr)mf \biggl( \frac{t}{2}b+ \frac{(2-t)}{2} \frac{a}{m} \biggr)\,dt \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \biggl\lbrace m \biggl[ mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \int _{0}^{1}t^{\alpha -1}E^{\gamma , \delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{2-t}{2} \biggr) \,dt \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{t}{2} \biggr) \,dt \biggr\rbrace . \end{aligned}$$
By using (4) and (5), we get
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) \biggl[ \bigl(\epsilon ^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l,\omega ^{o}2^{\mu }, ( \frac{a+bm}{2} ) ^{+}}f \bigr) (mb;p)+m^{\alpha +1} \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}(2m)^{\mu }, ( \frac{a+bm}{2m} ) ^{-}}f \bigr) \biggl(\frac{a}{m};p \biggr) \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \frac{(bm-a)^{\alpha }}{2^{\alpha }} \biggl\lbrace m \biggl[ mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \int _{0}^{1}t^{\alpha -1}E^{\gamma , \delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{2-t}{2} \biggr) \,dt \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h \biggl( \frac{t}{2} \biggr) \,dt \biggr\rbrace . \end{aligned}$$
From the above inequality and (13), we get the required inequality (11). □

Remark 5

If we put \(p=0\) in (11), then [16, Theorem 2.2] is obtained.

Corollary 2.3

If we put\(h(t)=t\), \(m=1\)and\(p=0\)in (11), then the following inequality analog to the Hadamard inequality [5, Theorem 2.1] for convex functions via generalized fractional integrals is obtained:
$$\begin{aligned} f \biggl( \frac{b+a}{2} \biggr) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o},a^{+}}1 \bigr) (b)&\leq \frac{1}{2} \bigl[ \bigl(\epsilon ^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l,\omega ^{o}, ( \frac{a+b}{2} ) ^{-}} f \bigr) (a )+ \bigl(\epsilon ^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l,\omega ^{o}, ( \frac{a+b}{2} ) ^{+}}f \bigr) (b) \bigr] \\ & \leq \frac{1}{2} \bigl[ f(a)+f(b) \bigr] \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o},b^{-}}1 \bigr) (a). \end{aligned}$$

If we put \(h(t)=t\), \(m=1\) and \(p=\omega =0\) in (11), then we get the following result for Riemann–Liouville fractional integral.

Corollary 2.4

([19])

Let\(f :[a,b]\to \mathbb{R}\)be a function with\(0 \leq a < b\)and\(f \in L_{1} [a,b]\). Iffis convex on\([a,b]\), then the following inequalities for fractional integrals hold:
$$\begin{aligned} &f \biggl( \frac{b+a}{2} \biggr) \leq \frac{2^{\alpha +1}\varGamma ( \alpha +1)}{(b-a)^{\alpha }} \bigl[I^{\alpha }_{ ( \frac{a+b}{2} ) ^{+}}f(b)+I^{\alpha }_{ ( \frac{a+b}{2} ) ^{-}}f(a) \bigr]\leq \frac{1}{2} \bigl[ f(a)+f(b) \bigr]. \end{aligned}$$

In the following we present a Fejér–Hadamard inequality for \((h-m)\)-convex functions via generalized fractional integral operators.

Theorem 2.5

Let\(f :[a,b]\subset [0,\infty )\to \mathbb{R}\)be a function such that\(f\in L_{1}[a,b]\)with\(a < b\)and\(m\in (0,1]\). Also, let\(g : [a,b]\to \mathbb{R}\)be a function which is non-negative and integrable. Iffis\((h-m)\)-convex, \(f(x)=f(a+mb-mx)\)and\(h\in L_{1}[0,1]\), then the following inequalities for extended generalized fractional integral operators, (4) and (5), hold:
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}g \bigr) \biggl( \frac{a}{m};p \biggr) \\ & \quad \leq h \biggl( \frac{1}{2} \biggr) (m+1) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}fg \bigr) \biggl( \frac{a}{m};p \biggr) \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \frac{(bm-a)^{\alpha }}{m^{\alpha }} \biggl\lbrace m \biggl[mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \bigl( \epsilon _{\mu ,\alpha ,l,\omega ,0^{+}} ^{\gamma ,\delta ,k,c}h \bigr) (1;p) \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \bigl(\epsilon _{\mu ,\alpha ,l,\omega ,1^{-}} ^{\gamma ,\delta ,k,c}h \bigr) (0;p) \biggr\rbrace , \end{aligned}$$
(15)
where\(\omega ^{o}=\frac{\omega }{(bm-a)^{\mu }}\).

Proof

Multiplying (8) by \(t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{ \mu ,\alpha ,l}(\omega t^{\mu };p)g ( tb+(1-t)\frac{a}{m} ) \) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \int _{0}^{1}t^{\alpha -1}E^{\gamma , \delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)g \biggl( tb+(1-t) \frac{a}{m} \biggr) \,dt \\ & \quad \leq h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E ^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)g \biggl( tb+(1-t) \frac{a}{m} \biggr) mf \biggl( (1-t)\frac{a}{m}+tb \biggr)\,dt \\ &\qquad {}+ \int _{0}^{1}t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{\mu , \alpha ,l} \bigl(\omega t^{\mu };p\bigr)g \biggl( tb+(1-t)\frac{a}{m} \biggr) f\bigl(m(1-t)b+ta\bigr)\,dt \biggr]. \end{aligned}$$
Putting \(x=(1-t)\frac{a}{m}+tb\) in the above and then, by using the condition \(f(x)=f(a+mb-mx)\), we get
$$\begin{aligned} &f \biggl( \frac{bm+a}{2} \biggr) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}g \bigr) \biggl( \frac{a}{m};p \biggr) \leq h \biggl( \frac{1}{2} \biggr) (m+1) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}fg \bigr) \biggl( \frac{a}{m};p \biggr). \end{aligned}$$
(16)
Now multiplying (10) by \(h ( \frac{1}{2} ) t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{\mu ,\alpha ,l}(\omega t^{\mu };p)g ( tb+(1-t)\frac{a}{m} )\) on both sides, then integrating over \([0,1]\), we have
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) \biggl[ \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)g \biggl( tb+(1-t) \frac{a}{m} \biggr)mf \biggl( (1-t)\frac{a}{m}+tb \biggr)\,dt \\ &\qquad {}+ \int _{0}^{1}t^{\alpha -1}E^{\gamma ,\delta ,k,c}_{\mu , \alpha ,l} \bigl(\omega t^{\mu };p\bigr)g \biggl( tb+(1-t)\frac{a}{m} \biggr)f \bigl(m(1-t)b+ta\bigr)\,dt \biggr] \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \biggl\lbrace \biggl[ m^{2}f \biggl( \frac{a}{m^{2}} \biggr) +mf(b) \biggr] \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h(1-t)\,dt \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \int _{0}^{1}t^{\alpha -1}E^{ \gamma ,\delta ,k,c}_{\mu ,\alpha ,l} \bigl(\omega t^{\mu };p\bigr)h(t)\,dt \biggr\rbrace . \end{aligned}$$
By using (4) and (5), we get
$$\begin{aligned} &h \biggl( \frac{1}{2} \biggr) (m+1) \bigl(\epsilon ^{\gamma ,\delta ,k,c} _{\mu ,\alpha ,l,\omega ^{o}m^{\mu },b^{-}}fg \bigr) \biggl( \frac{a}{m};p \biggr) \\ &\quad \leq h \biggl(\frac{1}{2} \biggr) \frac{(bm-a)^{\alpha }}{m^{\alpha }} \biggl\lbrace m \biggl[mf \biggl( \frac{a}{m ^{2}} \biggr) +f(b) \biggr] \bigl( \epsilon _{\mu ,\alpha ,l,\omega ,0^{+}} ^{\gamma ,\delta ,k,c}h \bigr) (1;p) \\ &\qquad {}+ \bigl[ mf(b)+f(a) \bigr] \bigl(\epsilon _{\mu ,\alpha ,l,\omega ,1^{-}} ^{\gamma ,\delta ,k,c}h \bigr) (0;p) \biggr\rbrace . \end{aligned}$$
From the above inequality and (16), we get the required inequality (15). □

Remark 6

  1. (i)

    If we put \(p=0\) in (15), then [16, Theorem 2.5] is obtained.

     
  2. (ii)

    If we put \(h(t)=t\), \(m=1\) and \(p=0\) in (15), then [5, Theorem 2.2] is obtained.

     

3 Concluding remarks

The aim of this paper is to extend the generalized fractional integral inequalities via \((h-m)\)-convexity. It is worthy of note that the presented results in particular contain a number of fractional integral inequalities for h-convex, m-convex, s-convex, convex and related functions (see Remark 1 and Remark 3). The Fejér–Hadamard inequality summarizes all the discussed results in a very nice compact form. We hope this work will attract researchers working in mathematical analysis, fractional calculus and other related fields.

Notes

Acknowledgements

The authors are thankful to both reviewers for positive comments, which improved the quality of this paper.

Availability of data and materials

All data is included within this paper.

Authors’ contributions

All authors contributed equally in this paper. All authors read and approved the final manuscript.

Funding

This research is funded by Higher Education Pakistan.

Competing interests

The authors do not have any competing interests.

References

  1. 1.
    Andrić, M., Farid, G., Pečarić, J.: A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 21(5), 1377–1395 (2018) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, F.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity. Chin. J. Math. 2014, 7 (2014) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chen, H., Katugampola, U.N.: Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446, 1274–1291 (2017) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Farid, G.: Hadamard and Fejér–Hadamard inequalities for generalized fractional integral involving special functions. Konuralp J. Math. 4(1), 108–113 (2016) MathSciNetzbMATHGoogle Scholar
  6. 6.
    Farid, G.: A treatment of the Hadamard inequality due to m-convexity via generalized fractional integral. J. Fract. Calc. Appl. 9(1), 8–14 (2018) MathSciNetGoogle Scholar
  7. 7.
    Farid, G., Rehman, A.U., Tariq, B.: On Hadamard-type inequalities for m-convex functions via Riemann–Liouville fractional integrals. Stud. Univ. Babeş–Bolyai, Math. 62(2), 141–150 (2017) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fejér, L.: Über die Fourierreihen II. Math. Naturwiss. Anz. Ungar. Akad. Wiss. 24, 369–390 (1906) zbMATHGoogle Scholar
  9. 9.
    Fernandez, A., Baleanu, D., Srivastava, H.M.: Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions. Commun. Nonlinear Sci. Numer. Simul. 67, 517–527 (2019) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) zbMATHGoogle Scholar
  11. 11.
    Loverro, A.: Fractional Calculus: History, Definitions and Applications for the Engineers. University of Notre Dame, Notre Dame (2004) Google Scholar
  12. 12.
    Özdemir, M.E., Akdemri, A.O., Set, E.: On \((h-m)\)-convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 8(1), 51–58 (2016) MathSciNetGoogle Scholar
  13. 13.
    Podlubni, I.: Fractional Differential Equations. Academic Press, San Diego (1999) Google Scholar
  14. 14.
    Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Rahman, G., Baleanu, D., Qurashi, M.A., Purohit, S.D., Mubeen, S., Arshad, M.: The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 10, 4244–4253 (2017) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rehman, A.U., Farid, G., Ain, Q.U.: Hadamard and Fejér–Hadamard inequalities for \((h-m)\)-convex function via fractional integral containing the generalized Mittag-Leffler function. J. Sci. Res. Reports 18(5), 1–8 (2018) Google Scholar
  17. 17.
    Salim, T.O., Faraj, A.W.: A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Fract. Calc. Appl. 3(5), 1–13 (2012) Google Scholar
  18. 18.
    Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. J. Math. Comput. Model 57(9), 2403–2407 (2013) CrossRefGoogle Scholar
  19. 19.
    Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049–1059 (2016) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336, 797–811 (2007) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 211(1), 198–210 (2009) MathSciNetzbMATHGoogle Scholar
  22. 22.
    Tunc, M.: On new inequalities for h-convex functions via Riemann–Liouville fractional integration. Filomat 27(4), 559–565 (2013) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Varosanec, S.: On h-convexity. J. Math. Anal. Appl. 326(1), 303–311 (2007) MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mathematics and Research Institute of Natural ScienceGyeongsang National UniversityJinjuKorea
  2. 2.Center for General EducationChina Medical UniversityTaichungTaiwan
  3. 3.Department of MathematicsCOMSATS University IslamabadAttock CampusPakistan
  4. 4.Division of Science and TechnologyUniversity of EducationLahorePakistan
  5. 5.Govt Boys Primary School SheraniAttockPakistan

Personalised recommendations