Certain inequalities for the modified Bessel-type function
- 200 Downloads
Abstract
We establish some new inequalities for the modified Bessel-type function \(\lambda _{\nu ,\sigma }^{(\beta )} (x )\) studied by Glaeske et al. [in J. Comput. Appl. Math. 118(1–2):151–168, 2000] as the kernel of an integral transformation that modifies Krätzel’s integral transformation. The inequalities obtained are closely related to the generalized Hurwitz–Lerch zeta function and complementary incomplete gamma function. We also deduce some useful inequalities for the modified Bessel function of the second kind \(K_{\nu } (x )\) and Mills’ ratio \(\mathsf{M} (x )\) as worthwhile applications of our main results.
Keywords
Čebyšev inequality Generalized Hurwitz–Lerch zeta function Hölder’s inequality Incomplete gamma function Mills’ ratioMSC
26D15 33B20 33C101 Introduction and motivation
Our main results obtained in Sect. 3 involve the complementary incomplete gamma function \(\varGamma (a,z )\) and the generalized Hurwitz–Lerch zeta function \(\varPhi _{\mu }^{*} (z,s,a )\). Their definitions and various properties are presented in Sect. 2.
2 Definitions and auxiliary results
In this section, we first briefly introduce the complementary incomplete gamma function and the generalized Hurwitz–Lerch zeta function, and establish for the latter a new property that plays an important role when we analyze the accuracy of the bounds obtained in Sect. 3. We also prove some auxiliary results which are required in the proofs of our main results.
It is worth mentioning here that \(\varPhi _{\mu }^{*} (z,s,a )\) can be viewed as a Riemann–Liouville fractional derivative of the classical Hurwitz–Lerch function \(\varPhi (z,s,a )\) (see [23]; see also [22, p. 208] and [24]).
Proposition 2.1
Proof
We now prove the following useful lemma.
Lemma 2.2
Proof
Remark 2.3
A special case of (18) when \(\alpha =2\) and ρ is restricted to \(\mathbb{N}\) was already proved by Gaunt [8, p. 989] using a different approach.
Lemma 2.4
Proof
We shall need the following version of Čebyšev inequality [27, p. 40, Theorem 10]; see also [28, 29] and [30].
Lemma 2.5
Iffandgare monotone in the opposite sense, inequality (26) reverses.
Lemma 2.6
([31, p. 404, Theorem 16.54])
3 Main results
Theorem 3.1
- (i)For\(\sigma \geq 0\), we havewhere\(\varPhi _{\mu }^{*} (z,s,a )\)is given by (11) and\(C_{\sigma }\)is given below by (31).$$\begin{aligned} \lambda _{\nu ,\sigma }^{ (\beta )} (x ) & \geq C_{\sigma } \biggl( \frac{\beta }{\beta -1} \biggr)^{\nu +1-1/ \beta } Q_{\beta ,\beta ,\nu } (x ) \mathrm{e}^{-x} +\frac{C _{\sigma }}{ (\beta -1 )^{\sigma }} \biggl(\frac{\beta }{ \beta -1} \biggr)^{\nu +1-1/\beta } \\ &\quad{} \cdot \frac{\varGamma (\sigma +1 )}{\varGamma (\nu +1-\frac{1}{\beta } )} \varPhi _{(1/\beta )-\nu }^{*} \biggl(1, \sigma +1,\frac{x}{\beta -1}+\frac{1}{\beta }-\nu \biggr)\mathrm{e} ^{-x}, \end{aligned}$$(28)
- (ii)For\(\sigma <0\), we havewhere\(Q_{\beta ,\beta ,\nu } (x )\)is given by (4).$$ \lambda _{\nu ,\sigma }^{ (\beta )} (x ) > \biggl( \frac{ \beta }{\beta -1} \biggr)^{\nu +1-1/\beta }Q_{\beta ,\beta ,\nu } (x-\sigma ) \mathrm{e}^{-x}, $$(29)
Proof
Corollary 3.2
Proof
Remark 3.3
Theorem 3.4
Proof
Remark 3.5
We observe that, when \(\sigma >0\), the functions f and g defined in the proof of Theorem 3.4 are monotone in the opposite sense. We cannot therefore use Čebyšev inequality to find a lower bound for this case. However, the use of Hölder inequality (27) enables us to unify the cases \(\sigma >0\) and \(\sigma \leq 0\) more efficiently.
Theorem 3.6
Proof
Corollary 3.7
Proof
Remark 3.8
Corollary 3.9
Proof
Notes
Acknowledgements
The authors would like to thank the referees and Professor Feng Qi (Editor, Journal of Inequalities and Applications) for their valuable comments and suggestions.
Availability of data and materials
Not applicable.
Authors’ contributions
All authors contributed equally to the manuscript. All authors read and approved the final manuscript.
Funding
Not applicable.
Competing interests
The authors declare that they have no competing interests.
References
- 1.Glaeske, H.J., Kilbas, A.A., Saigo, M.: A modified Bessel-type integral transform and its compositions with fractional calculus operators on spaces \(\mathcal{F}_{p,\mu }\) and \(\mathcal{F}_{p,\mu }'\). J. Comput. Appl. Math. 118(1–2), 151–168 (2000) MathSciNetzbMATHGoogle Scholar
- 2.Krätzel, E.: Eine verallgemeinerung der Laplace und Meijer tranformation. Wiss. Z. Univ. Jena Math. Naturwiss. Reihe 5, 369–381 (1965) zbMATHGoogle Scholar
- 3.Krätzel, E.: Übertragung der Post-Widderschen umkehrformel der Laplace-transformation auf die \(\mathcal{L}\)-transformation. Math. Nachr. 35, 295–304 (1967) MathSciNetzbMATHGoogle Scholar
- 4.Krätzel, E.: Differentiations Sätze der \(\mathcal{L}\)-transformation und Differentialgleichungen nach dem Operator \(\frac{\mathrm{d}}{\mathrm{d}t}[t^{\frac{1}{n}-\nu }(t^{1- \frac{1}{n}}\frac{\mathrm{d}}{\mathrm{d}t})^{n} t^{\nu +1-\frac{2}{n}}]\). Math. Nachr. 35, 105–114 (1967) MathSciNetGoogle Scholar
- 5.Barrios, J.A., Betancor, J.J.: A Krätzel’s integral transformation of distributions. Collect. Math. 42(1), 11–32 (1991) MathSciNetzbMATHGoogle Scholar
- 6.Betancor, J.J., Barrios, J.A.: A real inversion formula for the Krätzel’s generalized Laplace transform. Extr. Math. 6(2), 55–57 (1991) Google Scholar
- 7.Rao, G.L.N., Debnath, L.: A generalized Meijer transformation. Int. J. Math. Math. Sci. 8(2), 359–365 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Gaunt, R.E.: Inequalities for the modified Bessel function of the second kind and the kernel of the Krätzel integral transformation. Math. Inequal. Appl. 20(4), 987–990 (2017) MathSciNetzbMATHGoogle Scholar
- 9.Luke, Y.L.: Inequalities for generalized hypergeometric functions. J. Approx. Theory 5, 41–65 (1972) MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Gaunt, R.E.: Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420, 373–386 (2014) MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Bonilla, B., Kilbas, A.A., Rivero, M., Rodriguez, L., Trujillo, J.J.: Modified Bessel-type function and solution of differential and integral equations. Indian J. Pure Appl. Math. 31(1), 93–109 (2000) MathSciNetzbMATHGoogle Scholar
- 12.Kilbas, A.A., Rodríguez, L., Trujillo, J.J.: Asymptotic representations for hypergeometric-Bessel type function and fractional integrals. J. Comput. Appl. Math. 149, 469–487 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Kilbas, A.A., Saigo, M.: H-Transforms: Theory and Application. CRC Press, Boca Raton (2004) zbMATHCrossRefGoogle Scholar
- 14.Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) zbMATHCrossRefGoogle Scholar
- 15.Kilbas, A.A., Trujillo, J.J.: Computation of fractional integrals via functions of hypergeometric and Bessel type. J. Comput. Appl. Math. 118(1–2), 223–239 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010) zbMATHGoogle Scholar
- 17.Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Transcendental Functions, vol. 2. McGraw-Hill, New York (1953) zbMATHGoogle Scholar
- 18.Goyal, S.P., Laddha, R.K.: On the generalized Riemann zeta functions and the generalized Lambert transform. Ganita Sandesh 11, 99–108 (1997) MathSciNetzbMATHGoogle Scholar
- 19.Luo, M.J., Raina, R.K.: Some new results related to a class of generalized Hurwitz zeta function. J. Class. Anal. 6(2), 103–112 (2015) MathSciNetGoogle Scholar
- 20.Luo, M.J., Parmar, R.K., Raina, R.K.: On extended Hurwitz–Lerch zeta function. J. Math. Anal. Appl. 448, 1281–1304 (2017) MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Raina, R.K., Chhajed, P.K.: Certain results involving a class of functions associated with the Hurwitz Zeta function. Acta Math. Univ. Comen. 73, 89–100 (2004) MathSciNetzbMATHGoogle Scholar
- 22.Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012) zbMATHGoogle Scholar
- 23.Lin, S.D., Srivastava, H.M.: Some families of the Hurwitz–Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 154, 725–733 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Srivastava, H.M.: A new family of the λ-generalized Hurwitz–Lerch zeta functions with applications. Appl. Math. Inf. Sci. 8, 1485–1500 (2014) MathSciNetCrossRefGoogle Scholar
- 25.Rao, K.S., Berghe, G.V., Krattenthaler, C.: An entry of Ramanujan on hypergeometric series in his notebooks. J. Comput. Appl. Math. 173(2), 239–246 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: More Special Functions. Integrals and Series, vol. 3. Gordon & Breach, New York (1990) zbMATHGoogle Scholar
- 27.Mitrinović, D.S.: Analytic Inequalities. Springer, New York (1970) zbMATHCrossRefGoogle Scholar
- 28.Agarwal, R.P., Elezović, N., Pečarić, J.: On some inequalities for beta and gamma functions via some classical inequalities. J. Inequal. Appl. 5, 593–613 (2005) MathSciNetzbMATHGoogle Scholar
- 29.Dragomir, S.S., Agarwal, R.P., Barnett, N.S.: Inequalities for beta and gamma functions via some classical and new integral inequalities. J. Inequal. Appl. 5(2), 103–165 (2000) MathSciNetzbMATHGoogle Scholar
- 30.Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993) zbMATHCrossRefGoogle Scholar
- 31.Yeh, J.: Real Analysis, 2nd edn. World Scientific, Hackensack (2006) zbMATHCrossRefGoogle Scholar
- 32.Brychkov, Y.A.: Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. CRC Press, Boca Raton (2008) zbMATHCrossRefGoogle Scholar
- 33.Qi, F.: Monotonicity results and inequalities for the gamma and incomplete gamma functions. Math. Inequal. Appl. 5(1), 61–67 (2002) MathSciNetzbMATHGoogle Scholar
- 34.Qi, F., Cui, L.H., Xu, S.L.: Some inequalities constructed by Tchebysheff’s integral inequality. Math. Inequal. Appl. 2(4), 517–528 (1999) MathSciNetzbMATHGoogle Scholar
- 35.Qi, F., Guo, S.L.: Inequalities for the incomplete gamma and related functions. Math. Inequal. Appl. 2(1), 47–53 (1999) MathSciNetzbMATHGoogle Scholar
- 36.Qi, F., Mei, J.Q.: Some inequalities of the incomplete gamma and related functions. Z. Anal. Anwend. 18(3), 793–799 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
Copyright information
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.