A note on modified degenerate q-Daehee polynomials and numbers
- 144 Downloads
Abstract
We consider the modified degenerate q-Daehee polynomials and numbers of the second kind which can be represented as the p-adic q-integral. Furthermore, we investigate some properties of those polynomials and numbers.
Keywords
Modified q-Daehee polynomials and numbers Modified degenerate q-Daehee polynomials and numbers1 Introduction
In this paper, we consider the modified q-Daehee polynomials of the second kind and investigate their properties. Furthermore, we consider the modified degenerate q-Daehee polynomials of the second kind and investigate their properties.
2 The modified q-Daehee polynomials and numbers of the second kind
Let p be a fixed prime number. We assume that \(t \in \mathbb{C}_{p}\) with \(\vert t \vert _{p} < p^{-\frac{1}{p-1}}\) and \(q\in \mathbb{C}_{p}\) with \(\vert 1-q \vert _{p}< p^{-\frac{1}{p-1}} \).
Theorem 2.1
Thus, by (2.1), (2.5), and (2.6), we obtain the following theorem.
Theorem 2.2
Theorem 2.3
3 The modified degenerate q-Daehee polynomials of the second kind
Let p be a fixed prime number. We assume that \(t \in \mathbb{C}_{p}\) with \(\vert t \vert _{p} < p^{-\frac{1}{p-1}}\).
Theorem 3.1
Theorem 3.2
Theorem 3.3
4 Conclusion
Many authors studied the q-Daehee polynomials (1.5), the degenerate λ-q-Daehee polynomials of the second kind in [12, 33, 46]. In this paper, we defined the modified q-Daehee polynomials of the second kind (2.1), which are different from the q-Daehee polynomials (1.5), and the modified degenerate q-Daehee polynomials of the second kind (3.1), which are different from the modified q-Daehee numbers and polynomials in [31]. We obtained the interesting results of Theorems 2.1, 2.2, and 2.3, which are some identity properties related with the modified degenerate q-Daehee polynomials of the second kind (3.1) and also we obtained the results of Theorems 3.1, 3.2, and 3.3, which are some identities related with the modified q-Daehee polynomials of the second kind.
Notes
Authors’ contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.
Funding
This paper was supported by Wonkwang University in 2017.
Competing interests
The authors declare that they have no competing interests.
References
- 1.Araci, S., Acikgoz, M.: A note on the Frobenius–Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 22(3), 399–406 (2012) MathSciNetzbMATHGoogle Scholar
- 2.Bayad, A., Chikhi, J.: Apostol–Euler polynomials and asymptotics for negative binomial reciprocals. Adv. Stud. Contemp. Math. (Kyungshang) 24(1), 33–37 (2014) MathSciNetzbMATHGoogle Scholar
- 3.Carlitz, L.: q-Bernoulli and Eulerian numbers. Trans. Am. Math. Soc. 76, 332–350 (1954) MathSciNetzbMATHGoogle Scholar
- 4.Carlitz, L.: q-Bernoulli numbers and polynomials. Duke Math. J. 25, 987–1000 (1958) MathSciNetzbMATHGoogle Scholar
- 5.Carlitz, L.: Expansions of q-Bernoulli numbers. Duke Math. J. 25, 355–364 (1958) MathSciNetCrossRefGoogle Scholar
- 6.Dolgy, D.V., Jang, G.-W., Kwon, H.-I., Kim, T.: A note on Carlitz’s type q-Changhee numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27(4), 451–459 (2017) zbMATHGoogle Scholar
- 7.Dolgy, D.V., Kim, T.: Some explicit formulas of degenerate Stirling numbers associated with the degenerate special numbers and polynomials. Proc. Jangjeon Math. Soc. 21(2), 309–317 (2018) MathSciNetzbMATHGoogle Scholar
- 8.El-Desouky, B.S., Mustafa, A.: New results on higher-order Daehee and Bernoulli numbers and polynomials. Adv. Differ. Equ. 2016, 32 (2016) MathSciNetCrossRefGoogle Scholar
- 9.Jang, G.-W., Kim, T.: Revisit of identities for Daehee numbers arising from nonlinear differential equations. Proc. Jangjeon Math. Soc. 20(2), 163–177 (2017) MathSciNetzbMATHGoogle Scholar
- 10.Jang, G.W., Kim, D.S., Kim, T.: Degenerate Changhee numbers and polynomials of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 27(4), 609–624 (2017) MathSciNetzbMATHGoogle Scholar
- 11.Khan, W.A., Nisar, K.S., Duran, U., Acikgoz, M., Araci, S.: Multifarious implicit summation formulae of Hermite-based poly-Daehee polynomials. Proc. Jangjeon Math. Soc. 21(3), 305–310 (2018) MathSciNetGoogle Scholar
- 12.Kim, B.M., Yun, S.J., Park, J.-W.: On a degenerate λ-q-Daehee polynomials. J. Nonlinear Sci. Appl. 9, 4607–4616 (2016) MathSciNetCrossRefGoogle Scholar
- 13.Kim, D.S., Kim, T.: A note on degenerate Eulerian numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27(4), 431–440 (2017) zbMATHGoogle Scholar
- 14.Kim, D.S., Kim, T.: A new approach to Catalan numbers using differential equations. Russ. J. Math. Phys. 24(4), 465–475 (2018) MathSciNetCrossRefGoogle Scholar
- 15.Kim, D.S., Kim, T.: Some p-adic integrals on \(\mathbb{Z}_{p}\) associated with trigonometric functions. Russ. J. Math. Phys. 25(3), 300–308 (2018) MathSciNetCrossRefGoogle Scholar
- 16.Kim, D.S., Kim, T., Kwon, H.-I., Jang, G.-W.: Degenerate Daehee polynomials of the second kind. Proc. Jangjeon Math. Soc. 21(1), 83–97 (2018) MathSciNetzbMATHGoogle Scholar
- 17.Kim, T.: On explicit formulas of p-adic \(q-L\)-functions. Kyushu J. Math. 48(1), 73–86 (1994) MathSciNetCrossRefGoogle Scholar
- 18.Kim, T.: On p-adic q-Bernoulli numbers. J. Korean Math. Soc. 37(1), 21–30 (2000) MathSciNetzbMATHGoogle Scholar
- 19.Kim, T.: q-Volkenborn integration. Russ. J. Math. Phys. 9(3), 288–299 (2002) MathSciNetzbMATHGoogle Scholar
- 20.Kim, T.: An invariant p-adic q-integral on \(\mathbb{Z}_{p} \). Appl. Math. Lett. 21(2), 105–108 (2008) MathSciNetCrossRefGoogle Scholar
- 21.Kim, T.: On degenerate q -Bernoulli polynomials. Bull. Korean Math. Soc. 53(4), 1149–1156 (2016) MathSciNetCrossRefGoogle Scholar
- 22.Kim, T.: λ-Analogue of Stirling numbers of the first kind. Adv. Stud. Contemp. Math. (Kyungshang) 27(3), 423–429 (2017) zbMATHGoogle Scholar
- 23.Kim, T.: A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 20(3), 319–331 (2017) MathSciNetzbMATHGoogle Scholar
- 24.Kim, T.: Degenerate Cauchy numbers and polynomials of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 27(4), 441–449 (2018) zbMATHGoogle Scholar
- 25.Kim, T., Jang, G.-W.: Higher-order degenerate q-Bernoulli polynomials. Proc. Jangjeon Math. Soc. 20(1), 51–60 (2017) MathSciNetzbMATHGoogle Scholar
- 26.Kim, T., Jang, G.W.: A note on degenerate gamma function and degenerate Stirling number of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 28(2), 207–214 (2018) zbMATHGoogle Scholar
- 27.Kim, T., Kim, D.S.: Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 24(2), 241–248 (2017) MathSciNetCrossRefGoogle Scholar
- 28.Kim, T., Kim, D.S.: Identities for degenerate Bernoulli polynomials and Korobov polynomials. Sci. China Math. (2018). http://engine.scichina.com/publisher/scp/journal/SCM/doi/10.1007/s11425-018-9338-5?slug=abstract. https://doi.org/10.1007/s11425-018-9338-5 CrossRefGoogle Scholar
- 29.Kim, T., Simsek, Y.: Analytic continuation of the multiple Daehee \(q-l\)-functions associated with Daehee numbers. Russ. J. Math. Phys. 15(1), 58–65 (2008) MathSciNetCrossRefGoogle Scholar
- 30.Kim, T., Yao, Y., Kim, D.S., Jang, G.-W.: Degenerate r-Stirling numbers and r-Bell polynomials. Russ. J. Math. Phys. 25(1), 44–58 (2018) MathSciNetCrossRefGoogle Scholar
- 31.Lim, D.: Modified q-Daehee numbers and polynomials. J. Comput. Anal. Appl. 21(2), 324–330 (2016) MathSciNetzbMATHGoogle Scholar
- 32.Liu, C., Wuyungaowa: Application of probabilistic method on Daehee sequences. Eur. J. Pure Appl. Math. 11(1), 69–78 (2018) MathSciNetCrossRefGoogle Scholar
- 33.Moon, E.-J., Park, J.-W., Rim, S.-H.: A note on the generalized q-Daehee numbers of higher order. Proc. Jangjeon Math. Soc. 17(4), 557–565 (2014) MathSciNetzbMATHGoogle Scholar
- 34.Ozden, H., Cangul, I.N., Simsek, Y.: Remarks on q-Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. (Kyungshang) 18(1), 41–48 (2009) MathSciNetzbMATHGoogle Scholar
- 35.Park, J.-W.: On the q-analogue of Daehee numbers and polynomials. Proc. Jangjeon Math. Soc. 19(3), 537–544 (2016) MathSciNetzbMATHGoogle Scholar
- 36.Park, J.-W., Kim, B.M., Kwon, J.: On a modified degenerate Daehee polynomials and numbers. J. Nonlinear Sci. Appl. 10, 1108–1115 (2017) MathSciNetCrossRefGoogle Scholar
- 37.Pyo, S.-S.: Degenerate Cauchy numbers and polynomials of the fourth kind. Adv. Stud. Contemp. Math. (Kyungshang) 28(1), 127–138 (2018) MathSciNetzbMATHGoogle Scholar
- 38.Rim, S.-H., Kim, T., Pyo, S.-S.: Identities between harmonic, hyperharmonic and Daehee numbers. J. Inequal. Appl. 2018, 168 (2018) MathSciNetCrossRefGoogle Scholar
- 39.Schikhof, W.H.: Ultrametric Calculus: An Introduction to a p-Adic Analysis. Cambridge Studies in Advanced Mathematics, vol. 4, p. 167, Definition 55.1. Cambridge University Press, Cambridge (1985) CrossRefGoogle Scholar
- 40.Shiratani, K., Yokoyama, S.: An application of p-adic convolutions. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. 36(1), 73–83 (1982) MathSciNetzbMATHGoogle Scholar
- 41.Simsek, Y.: Analysis of the p-adic q-Volkenborn integrals; an approach to generalized Apostrol-type special numbers and polynomials and their applications. Cogent Math. 3, 1269393 (2016) CrossRefGoogle Scholar
- 42.Simsek, Y.: Apostol type Daehee numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 26(3), 555–566 (2016) zbMATHGoogle Scholar
- 43.Simsek, Y.: Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27(2), 199–212 (2017) MathSciNetzbMATHGoogle Scholar
- 44.Simsek, Y.: Identities and relations related to combinatorial numbers and polynomials. Proc. Jangjeon Math. Soc. 20(1), 127–135 (2017) MathSciNetzbMATHGoogle Scholar
- 45.Simsek, Y.: Construction of some new families of Apostol-type numbers and polynomials via Dirichlet character and p-adic q-integrals. Turk. J. Math. 42, 557–577 (2018) MathSciNetCrossRefGoogle Scholar
- 46.Simsek, Y., Rim, S.-H., Jang, L.-C., Kang, D.-J., Seo, J.-J.: A note on q-Daehee sums. In: Proceedings of the 16th. International Conference of the Jangjeon Mathematical Society, vol. 36, pp. 159–166. Jangjeon Math. Soc., Hapcheon (2005) Google Scholar
- 47.Simsek, Y., Yardimci, A.: Applications on the Apostol–Daehee numbers and polynomials associated with special numbers, polynomials, and p-adic integrals. Adv. Differ. Equ. 2016, 308 (2016) MathSciNetCrossRefGoogle Scholar
- 48.Washington, L.C.: Introduction to Cyclotomic Fields, 2nd edn. Graduate Texts in Mathematics, vol. 83, xiv+487 pp. Springer, New York (1997). ISBN 0-387947620 CrossRefGoogle Scholar
Copyright information
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.