Improved McClelland and Koolen–Moulton bounds for distance energy of a graph

  • G. Sridhara
  • M. R. Rajesh KannaEmail author
  • R. Pradeep Kumar
  • D. Soner Nandappa
Open Access


Let G be a graph with n vertices and m edges. The term energy of a graph G was introduced by I. Gutman in chemistry due to its relevance to the total π-electron energy of a carbon compound. An analogous energy \(\mathcal{E}_{D}(G)\), called the distance energy, was defined by Indulal et al. (MATCH Commun. Math. Comput. Chem. 60:461–472, 2008) in 2008. McClelland and Koolen–Moulton bounds for distance energy were established subsequently by Ramane et al. (Kragujev. J. Math. 31:59–68, 2008). The lower and upper bounds for \(\mathcal{E}_{D}(G)\) obtained in this paper are better than the McClelland and Koolen–Moulton bounds.


Distance matrix Distance spectrum Bounds for distance energy of graph 


05C50 05C69 

1 Introduction

Let G be a simple undirected graph with n vertices and m edges. The distance between two vertices \(v_{i}\) and \(v_{j}\) is denoted by \(d_{ij}\) and is defined as the length of the shortest path from \(v_{i}\) to \(v_{j}\). The distance sum \(W(G)= {\sum_{i< j}d_{ij}}\) is called the Wiener index of the graph G. For simplicity, we write the Wiener index as W. The distance matrix of the graph G is defined as \(A(G)= A_{D}(G)= [d_{ij}]\). Clearly, \(A_{D}(G)\) is a symmetric matrix. Its eigenvalues are called D-eigenvalues and are ordered in the form \(\mu _{1} \geq\mu_{2} \geq\cdots\geq\mu_{n}\). The largest eigenvalue \(\mu_{1}\) is called the distance spectral radius of the graph G. We also write its absolute eigenvalues in decreasing order as \(\rho_{1} \geq\rho_{2} \geq\cdots\geq\rho_{n}\). Given a graph G, the distance energy of G is defined by \(\mathcal{E}_{D}(G)\) = \({\sum_{i=1}^{n}|\mu_{i}| = \sum_{i=1}^{n}\rho_{i}}\). For any vertex \(v_{i}\) in the connected graph G, the eccentricity \(e(v_{i})\) is the distance between \(v_{i}\) and a vertex that is farthest from \(v_{i}\) in G. The minimum eccentricity among the vertices of G is called the radius of graph G, and the maximum eccentricity among the vertices is called the diameter of the graph G, which are respectively denoted by rad\((G)\) and diam\((G)\).

The distance energy is analogous to the ordinary energy of a graph G, which is defined as \(\mathcal{E}(G)\) = \({\sum_{i=1}^{n}|\lambda_{i}|}\), where \(\lambda_{1} \geq\lambda_{2} \geq\cdots\geq\lambda_{n}\) are ordinary eigenvalues of G obtained from its adjacency matrix. The studies on the graph energy can be seen in papers [5, 6]. For a detailed survey on applications to the graph energy, see [2, 3, 4, 7]. For the ordinary energy, the best known bounds are the Koolen and Moulton upper bound [9, 10] and the McClelland lower bound [12].

For a connected graph G, the Koolen and Moulton upper bound [13] for the distance energy in terms of W, M, and n is
$$ {\mathcal{E}_{D}(G) \leq \biggl(\frac{2W}{n} \biggr) + \sqrt{(n-1) \biggl(2M - \biggl(\frac{2W}{n} \biggr)^{2} \biggr)}} \quad\mbox{for } 2W \geq n, $$
where \({M= \sum_{i< j}^{n}d_{ij}^{2} }\).

In this paper, we show that the upper bound (1.1) can be modified to a better bound for all classes of graphs with \(n^{2} \geq4m\). Further results on upper bounds can also be seen in [11].

The McClelland bounds [13] for the distance energy of a graph, which is true for any connected graph G, is
$$ {\sqrt{2M + n(n-1) \bigl\vert \operatorname{det}(A) \bigr\vert ^{\frac{2}{n}}} \leq\mathcal{E}_{D}(G) \leq \sqrt{2Mn}}. $$
The lower bound obtained in this paper is better than that of McClelland. For more studies on the distance energy, we refer to [1, 8, 14].

We use the following two lemmas, which follow from the properties of distance eigenvalues.

Lemma 1.1

LetGbe a graph with\(n \geq3\)vertices andmedges. Let\(\mu_{1} \geq\mu_{2}\geq\cdots\geq\mu_{n}\)beD-eigenvalues ofG. Then
$${\sum_{i=1}^{n}\mu_{i}= 0} \quad \textit{and}\quad {\sum_{i=1}^{n} \mu_{i}^{2}= 2M}. $$

Lemma 1.2

If\(\mu_{1}(G)\)is the distance spectral radius of the graphG, then\(\mu_{1}(G) \geq\frac{2W}{n}\).

Note that \({M= \sum_{i< j}^{n}d_{ij}^{2} \geq \sum_{i< j}^{n}d_{ij} = W}\) and \({\sqrt{M}= \sqrt{\sum_{i< j}^{n}d_{ij}^{2} } \leq \sum_{i< j}^{n}d_{ij} = W}\).

2 The main results

Lemma 2.1

If\(\mu_{n}(G)\)is the smallest distance eigenvalue of the graphGand\(\rho_{n}(G)\)is the smallest absolute distance eigenvalue, then
$${\mu_{n}(G)\leq\sqrt{\frac{2W}{n}}} \quad\textit{and}\quad { \rho_{n}(G) \leq \bigl\vert \operatorname{det}(A) \bigr\vert ^{\frac{1}{n}}}. $$


For any nonzero vector X,
$${\mu_{n}(G) \leq\min_{X \neq0} \biggl(\frac{X'AX}{X'X} \biggr) \leq\sqrt {\frac{J'AJ}{J'J}} = \sqrt{\frac{2W}{n}}}, $$
where J is the unit \(n\times1\) matrix \(J =[1,1,1,\ldots,1]'\). Now consider \(\rho_{1}\rho_{2}\rho_{3} \ldots\rho_{n}= |\operatorname{det}(A)|\). Then \(\rho_{n}\rho_{n}\rho_{n}\ldots\rho_{n} \leq\rho_{1}\rho_{2}\rho_{3} \ldots\rho _{n} \leq|\operatorname{det}(A)|\)\(\Rightarrow {\rho_{n}(G) \leq |\operatorname{det}(A)|^{\frac{1}{n}}}\). □

Lemma 2.2

LetGbe a graph with\(n \geq3\)vertices andmedges. For the largest and smallest distance eigenvalues\(\mu_{1}\)and\(\mu_{n}\)ofG, \({\mu_{1} + \mu_{n}\leq2\sqrt{\frac{M(n-2)}{n}}}\).


For D-eigenvalues \(\mu_{1} \geq\mu_{2} \geq\cdots\geq\mu_{n}\) of G, it is well known that \({\sum_{i=1}^{n}\mu_{i}= 0}\) and \({\sum_{i=1}^{n}\mu_{i}^{2}= 2M}\). Using the Cauchy–Schwarz inequality for \((\mu_{2},\mu_{3},\ldots,\mu _{n-1})\) and \((\underbrace{1,1,\ldots,1)}_{(n-2)\ times}\ (n\geq3)\) we have
$${ \Biggl(\sum_{i=2}^{n-1}\mu_{i} \Biggr)^{2}} \leq \Biggl(\sum_{i=2}^{n-1}1 \Biggr) \Biggl(\sum_{i=2}^{n-1} \mu_{i}^{2} \Biggr), $$
that is, \((-\mu_{1}-\mu_{n})^{2} \leq(n-2)(2M-\mu_{1}^{2}-\mu_{n}^{2})\).
$$\begin{aligned} \therefore (n-2)2M &\geq(\mu_{1} + \mu_{n})^{2} + (n-2) \bigl(\mu_{1}^{2} + \mu_{n}^{2} \bigr) \\ &= (\mu_{1} + \mu_{n})^{2} + (n-2) \bigl(( \mu_{1} + \mu_{n})^{2} -2\mu_{1} \mu_{n}\bigr) \\ &= (\mu_{1} + \mu_{n})^{2}(n-1) -2(n-2) \mu_{1} \mu_{n}. \end{aligned}$$

However, \({ (\frac{\mu_{1} + \mu_{n}}{2} )^{2} \geq\mu_{1} \mu_{n}}\), which implies that \({-\mu_{1} \mu_{n} \geq- (\frac{\mu_{1} + \mu _{n}}{2} )^{2}}\).

Thus \({(n-2)2M \geq(\mu_{1} + \mu_{n})^{2}(n-1) - 2(n-2)\frac{(\mu_{1} +\mu _{n})^{2}}{4}}\) = \((\mu_{1} +\mu_{n})^{2} \frac{n}{2}\).

Hence \(\mu_{1} + \mu_{n} \leq2 \sqrt{\frac{M(n-2)}{n}}\). □

3 Upper bound for the distance energy of a graph

Theorem 3.1

LetGbe a graph with\(n \geq3\)vertices andmedges. If\(n^{2} \geq4m\), then
$$ {\mathcal{E}_{D}(G) \leq\frac{2W}{n} +\sqrt{ \frac{2W}{n}} + \sqrt {(n-2) \biggl(2M -\frac{2W}{n} - \frac{4W^{2}}{n^{2}} \biggr)}}. $$
The equality holds iffGis\(\frac{n}{2}K_{2}\).


Applying the Cauchy–Schwarz inequality for \((|\mu_{2}|,|\mu_{3}|, \ldots, |\mu_{n-1}|)\) and \((\underbrace{1,1, \ldots, 1)}_{(n-2)\ times}\), we have
$$\begin{aligned} & { \Biggl(\sum_{i=2}^{n-1} \vert \mu_{i} \vert \Biggr)^{2}} \leq \Biggl(\sum _{i=2}^{n-1}1 \Biggr) \Biggl(\sum _{i=2}^{n-1} \vert \mu_{i} \vert ^{2} \Biggr), \\ & {\bigl(\mathcal{E}_{D}(G)- \vert \mu_{1} \vert - \vert \mu_{n} \vert \bigr)^{2} \leq(n-2) \bigl(2M - \vert \mu_{1} \vert ^{2} - \vert \mu_{n} \vert ^{2}\bigr)}, \\ &\mathcal{E}_{D}(G) \leq \vert \mu_{1} \vert + \vert \mu_{n} \vert + \sqrt{(n-2) \bigl(2M - \vert \mu_{1} \vert ^{2} - \vert \mu_{n} \vert ^{2}\bigr)}. \end{aligned}$$

Let \(|\mu_{1}|= x\) and \(|\mu_{n}|=y\).

We maximize the function \(f(x,y) = x + y + \sqrt{(n-2)(2M - x^{2} - y^{2})}\). Differentiating \(f(x, y)\) with respect to x and y, we have
$$\begin{aligned} & {f_{x} = 1 - \frac{x(n-2)}{\sqrt{(n-2)(2M-x^{2}-y^{2})}}}, \qquad {f_{y} = 1 - \frac{y(n-2)}{\sqrt{(n-2)(2M-x^{2}-y^{2})}}}, \\ & {f_{xx} = - \frac{\sqrt{(n-2)}(2M - y^{2})}{(2M - x^{2}- y^{2})^{\frac {3}{2}}}}, \qquad{f_{yy} = - \frac{\sqrt{(n-2)}(2M - x^{2})}{(2M - x^{2}- y^{2})^{\frac{3}{2}}}}\quad \mbox{and} \\ &{f_{xy} = - \frac{\sqrt{(n-2)}(xy)}{(2M - x^{2}- y^{2})^{\frac{3}{2}}}}. \end{aligned}$$
For maxima or minima, \(f_{x} = 0\) and \(f_{y} = 0\), which implies
$$x^{2}(n-1) + y^{2} = 2M \quad\mbox{and}\quad y^{2}(n-1) + x^{2} = 2M. $$
Solving these equations, we obtain that \({x=y =\sqrt{\frac{2M}{n}}}\). At this point the values of \(f_{xx}\), \(f_{yy}\), \(f_{xy}\), and \({\Delta = f_{xx}f_{yy} - (f_{xy})^{2}}\) are
$$\begin{aligned} & {f_{xx} = -\frac{\sqrt{(n-2)}(n-1)}{\sqrt{\frac{2M}{n}}(n-2)^{\frac {3}{2}}}} \leq0,\qquad {f_{yy} = - \frac{\sqrt{(n-2)}(n-1)}{\sqrt{\frac {2M}{n}}(n-2)^{\frac{3}{2}}}}, \\ & {f_{xy} = -\frac{\sqrt{(n-2)}}{\sqrt{\frac{2M}{n}}(n-2)^{\frac {3}{2}}}} \quad\mbox{and}\quad {\Delta= \frac{n(n^{2}+3-3n)}{2M(n-2)^{2}}} \geq0. \end{aligned}$$

Therefore \(f(x,y)\) attains its maximum value at \({x=y =\sqrt{\frac {2M}{n}}}\), and this maximum value is \(f (\sqrt{\frac{2M}{n}}, \sqrt {\frac{2M}{n}} ) = \sqrt{2Mn}\).

However, \(f(x,y)\) decreases in the intervals
$$\sqrt{\frac{2M}{n}} \leq x \leq\sqrt{M}\quad\mbox{and}\quad 0 \leq y \leq \sqrt{ \frac{2W}{n}} \leq\sqrt{\frac{2M}{n}} \leq\sqrt{M}. $$
Since \({n^{2} \geq4m}\), \(m \leq W \leq M\), and \(\sqrt{M} \leq W\), we have
$$\sqrt{\frac{2m}{n}} \leq\sqrt{\frac{2M}{n}} \leq\frac {2W}{n} \leq \vert \mu_{1} \vert \leq\sqrt{M},\qquad 0 \leq \vert \mu_{n} \vert \leq\sqrt{\frac {2W}{n}} \leq\sqrt{ \frac{2M}{n}} \leq\sqrt{M}. $$
Thus \(f (|\mu_{1}|,|\mu_{n}| ) \leq f (\frac{2W}{n}, \sqrt{\frac {2W}{n}} )\leq f (\sqrt{\frac{2M}{n}}, \sqrt{\frac{2M}{n}} )\)
$$\Rightarrow\quad {\mathcal{E}_{D}(G) \leq\frac{2W}{n} +\sqrt{ \frac {2W}{n}} + \sqrt{(n-2) \biggl(2m -\frac{2W}{n} - \frac{4W^{2}}{n^{2}} \biggr)} \leq\sqrt{2Mn}}. $$

For the graph \({G \simeq\frac{n}{2}K_{2}\ (n=2m)}\), \(\mathcal{E}_{D}(G)= n\). Hence the equality holds. □

Now we show that the above bound is an improvement of the Koolen–Moulton bound. Take \({g(x,y) = x + y + \sqrt{(n-1)(2M - x^{2} - y^{2})}}\). Then, clearly, \({f(x,y) \leq g(x,y)}\) for all \((x, y)\) in the given region of x and y.

Along \({x = \frac{2W}{n}}\), \({f (\frac{2W}{n},y ) = \frac {2W}{n} + y + \sqrt{(n-2) (2M - \frac{4W^{2}}{n^{2}} - y^{2} )}}\). However, \({f (\frac{2W}{n},y )}\) decreases in the interval \({0 \leq y \leq\sqrt{2M - \frac{4M^{2}}{n^{2}}}}\). Since \(n^{2} \geq4m\), we also have \(0 \leq y \leq\sqrt{\frac{2W}{n}} \leq\sqrt{2M - \frac{4W^{2}}{n^{2}}}\). Thus \(f (\frac{2W}{n},\sqrt{\frac{2W}{n}} ) \leq f (\frac {2W}{n}, 0 )\).

Since \(f (\frac{2W}{n},0 ) \leq g (\frac{2W}{n},0 )\) and \(g(\frac{2W}{n},0) = \frac{2W}{n} + \sqrt{(n-1) (2M - \frac {4W^{2}}{n^{2}} )}\), it follows that \(f (\frac{2W}{n},\sqrt{\frac {2W}{n}} ) \leq g (\frac{2W}{n},0 )\). Hence
$$\frac{2W}{n} +\sqrt{\frac{2W}{n}} + \sqrt{(n-2) \biggl(2M -\frac{2m}{n} - \frac{4W^{2}}{n^{2}} \biggr)} \leq \biggl(\frac{2W}{n} \biggr) + \sqrt{(n-1) \biggl(2M - \biggl(\frac{2W}{n} \biggr)^{2} \biggr)}. $$

4 Lower bounds for the distance energy of a graph

Theorem 4.1

IfGis a nonsingular graph, then\(\mathcal{E}_{D}(G) \geq n |\operatorname{det}A|^{\frac{1}{n}}\). The equality holds iffGis\(\frac {n}{2}K_{2}\), where\(n=2m\).


For the eigenvalues \(\rho_{1}\geq\rho_{2} \geq\cdots\geq \rho_{n}\) of G (or its adjacency distance matrix A) it is well known that \(|\operatorname{det}(A)| = \rho_{1}\rho_{2}\ldots\rho_{n}\). Since G is nonsingular, we have \(|\operatorname{det}(A)| \neq0\).

Applying the Cauchy–Schwarz inequality for n terms \(a_{i}=\sqrt{\rho _{i}}\) and \(b_{i} =1\) for all \(i=1,2,\ldots,n\), We have
$$\begin{aligned} &{\sum_{i=1}^{n}\sqrt{\rho_{i}} \leq\sqrt{ \Biggl(\sum_{i=1}^{n} \rho_{i} \Biggr)n}}, \\ & {\sqrt{\mathcal{E}_{D}(G)} \geq\frac{\sum_{i=1}^{n}\sqrt{\rho_{i}}}{\sqrt {n}} }. \end{aligned}$$
However, \({\frac{\sqrt{\rho_{1}} + \sqrt{\rho_{2}} + \cdots+ \sqrt{\rho _{n}}}{n} \geq (\sqrt{\rho_{1}\rho_{2}\ldots\rho_{n}} )^{\frac{1}{n}}}\),
$$\begin{aligned} {\sqrt{\mathcal{E}_{D}(G)} \geq\frac{n (\sqrt{\rho_{1}\rho_{2}\ldots\rho _{n}} )^{\frac{1}{n}}}{\sqrt{n}}} \quad \Rightarrow\quad {\mathcal{E}_{D}(G) \geq n \vert \operatorname{det}A \vert ^{\frac{1}{n}}}. \end{aligned}$$

For the graph \(G\simeq\frac{n}{2}K_{2}\) with \(n=2m\), \(|\operatorname{det}(A)| =1\). Hence the equality holds. □

Theorem 4.2

LetGbe a graph with\(n > 1\)vertices andmedges, and let\(2W \geq n\). Then
$$\begin{aligned} {\mathcal{E}_{D}(G) \geq\frac{2W}{n} + \frac{(n-1) \vert \operatorname{det}(A) \vert ^{\frac {1}{(n-1)}}}{ (\frac{2W}{n} )^{\frac{1}{(n-1)}}}}. \end{aligned}$$

The equality holds ifGis isomorphic to\(K_{n}\)and\(\frac {n}{2}K_{2}\)with\(n=2m\).


Using the Cauchy–Schwarz inequality for \(\sqrt{\rho_{2}},\sqrt {\rho_{3}},\ldots,\sqrt{\rho_{n}}\) and \((\underbrace{1,1,\ldots,1)}_{(n-1)\ times}\), we have
$$\begin{aligned} &{\sum_{i=2}^{n}\sqrt{\rho_{i}} \leq\sqrt{ \Biggl(\sum_{i=2}^{n} \rho_{i} \Biggr) (n-1)}}, \\ &{\sum_{i=2}^{n}\sqrt{\rho_{i}} \leq\sqrt{ \bigl(\mathcal{E}_{D}(G) - \rho _{1} \bigr) (n-1)}}, \\ &{\sqrt{\mathcal{E}_{D}(G) - \rho_{1}} \geq \frac{\sum_{i=2}^{n}\sqrt{\rho _{i}}}{\sqrt{n-1}} }. \end{aligned}$$
However, \({\frac{\sqrt{\rho_{2}} + \sqrt{\rho_{3}} + \cdots+ \sqrt{\rho _{n}}}{n-1} \geq (\sqrt{\rho_{2}\rho_{3}\ldots\rho_{n}} )^{\frac{1}{n-1}}}\), and therefore
$$\begin{aligned} &{\sqrt{\mathcal{E}_{D}(G) - \rho_{1}} \geq \frac{(n-1) (\sqrt{\rho_{2}\rho _{3}\ldots\rho_{n}} )^{\frac{1}{(n-1)}}}{\sqrt{(n-1)}}}, \\ &{\mathcal{E}_{D}(G) \geq\rho_{1} + (n-1) ( \rho_{2}\rho_{3}\ldots\rho_{n} )^{\frac{1}{(n-1)}}} = \rho_{1} + (n-1) \biggl(\frac{ \vert \operatorname{det}(A) \vert }{\rho_{1}} \biggr)^{\frac{1}{(n-1)}}. \end{aligned}$$

Let \(\rho_{1} = x\) and \({f(x) = x + (n-1) (\frac{|\operatorname{det}(A)|}{x} )^{\frac{1}{(n-1)}}}\). Then \({f'(x) = 1- \frac{|\operatorname{det}(A)|^{\frac{1}{(n-1)}}}{x^{\frac{n}{(n-1)}}}}\) and \(f''(x) = \frac{n|\operatorname{det}(A)|^{\frac{1}{(n-1)}}}{(n-1) x^{\frac{(2n-1)}{(n-1)}}}\).

For maxima or minima, \(f'(x) = 0\), which gives the value \(x = |\operatorname{det} (A)|^{\frac{1}{n}}\).

At this point, \({f''(x) = \frac{n}{(n-1)}|\operatorname{det}(A)|^{\frac{-1}{n}}} \geq 0\) for all \(n > 1\). Thus the function \(f(x)\) attains its minimum at \(x = |\operatorname{det}(A)|^{\frac{1}{n}}\), and the minimum value is \({f(|\operatorname{det}(A)|^{\frac{1}{n}}) = n |\operatorname{det}(A)|^{\frac{1}{n}}}\). However, \({ \frac {2M}{n} = \frac{\rho_{1}^{2} + \rho_{2}^{2} + \cdots+\rho_{n}^{2}}{n}}\geq\frac {2W}{n} \geq { \frac{\rho_{1}+ \rho_{2} + \cdots+\rho_{n}}{n} \geq(\rho _{1}\rho_{2}\ldots\rho_{n})^{\frac{1}{n}}}\). This implies \(|\operatorname{det}(A)|^{\frac{1}{n}}\leq \frac{2W}{n}\). Since \(2W \geq n\), we have \(\frac{2W}{n} \leq\rho_{1}\).

Therefore, the function is increasing in the interval \(|\operatorname{det}A|^{\frac {1}{n}} \leq\frac{2W}{n} \leq\rho_{1}\leq\sqrt{2M}\), and therefore \({f(\rho_{1}) \geq f (\frac{2W}{n} )}\), and
$${\mathcal{E}_{D}(G) \geq\frac{2W}{n} + \frac{(n-1) \vert \operatorname{det}(A) \vert ^{\frac {1}{(n-1)}}}{ (\frac{2W}{n} )^{\frac{1}{(n-1)}}}}. $$

(i) If G is isomorphic to \(K_{n}\), then \(|\operatorname{det}(A)|= n-1\), \(\frac {2W}{n} = n-1\), and hence \(\mathcal{E}_{D}(G) = 2(n-1)\).

(ii) If G isomorphic to \(\frac{n}{2}K_{2}\) with \(n=2m\), then the eigenvalues are ±1 (each with multiplicity \(\frac{n}{2}\)), and hence \(\mathcal{E}_{D}(G) = n\). □

Theorem 4.3

LetGbe a graph withmedges and\(n\ (>3)\)vertices, and let\(W \geq n\). Then
$$\begin{aligned} {\mathcal{E}_{D}(G) \geq \biggl(\frac{W}{n} \biggr) + \biggl(\frac{2W}{n} \biggr) + \frac{(n-2) \vert \operatorname{det}(A) \vert ^{\frac{1}{(n-2)}}}{ ( (\frac{W}{n} ) (\frac{2W}{n} ) )^{\frac{1}{(n-2)}}}}. \end{aligned}$$


For \((n-2)\) entries of eigenvalues \(\sqrt{\rho_{2}},\sqrt{\rho _{3}},\ldots,\sqrt{\rho_{n-1}}\) and \((\underbrace{1,1,\ldots,1)}_{(n-2)\ times}\), applying the Cauchy–Schwarz inequality, we have
$${\sum_{i=2}^{n-1}\sqrt{\rho_{i}} \leq\sqrt{ \Biggl(\sum_{i=2}^{n-1}\rho _{i} \Biggr) (n-2)}}, $$
that is,
$${\sum_{i=2}^{n-1}\sqrt{\rho_{i}} \leq\sqrt{ \bigl(\mathcal{E}_{D}(G) - \rho _{1} - \rho_{n} \bigr) (n-2)}}, $$
so that
$${\sqrt{\mathcal{E}_{D}(G) - \rho_{1} - \rho_{n}} \geq\frac{ \sum_{i=2}^{n-1}\sqrt{\rho_{i}}}{\sqrt{n-2}} }. $$
Since the arithmetic mean is greater than or equal to the geometric mean, we get
$$\begin{aligned} &{\sqrt{\mathcal{E}_{D}(G) - \rho_{1} - \rho_{n}} \geq\frac{(n-2) (\sqrt {\rho_{2}\rho_{3}\ldots\rho_{n-1}} )^{\frac{1}{(n-2)}}}{\sqrt{(n-2)}}}, \\ &\mathcal{E}_{D}(G) \geq\rho_{1} + \rho_{n} + (n-2) \biggl(\frac{ \vert \operatorname{det}(A) \vert }{\rho _{1}\rho_{n}} \biggr)^{\frac{1}{(n-2)}}. \end{aligned}$$

The equality holds if G is \(\frac{n}{2}K_{2}\) with \(n=2m\) or \(K_{n,n}\).

Put \(\rho_{1} = x\) and \(\rho_{n} = y\). We minimize the right side of the above function. Let \(f(x,y) = x + y + (n-2) (\frac{|\operatorname{det}(A)|}{x y} )^{\frac {1}{(n-2)}}\). Then \({f_{x} = 1 - |\operatorname{det}(A)|^{\frac{1}{n-2}} y (xy)^{\frac {-(n-1)}{n-2}}}\),
$$\begin{aligned} & {f_{y} = 1 - \bigl\vert \operatorname{det}(A) \bigr\vert ^{\frac{1}{n-2}} x (xy)^{\frac{-(n-1)}{n-2}}}, \\ &{f_{xx} = \bigl\vert \operatorname{det}(A) \bigr\vert ^{\frac{1}{n-2}} \biggl(\frac{n-1}{n-2} \biggr) y^{2} (xy)^{\frac{-(2n-3)}{n-2}}}, \\ & {f_{yy} = \bigl\vert \operatorname{det}(A) \bigr\vert ^{\frac{1}{n-2}} \biggl(\frac{n-1}{n-2} \biggr) x^{2} (xy)^{\frac{-(2n-3)}{n-2}}}\quad \mbox{and} \\ &{f_{xy} = \bigl\vert \operatorname{det}(A) \bigr\vert ^{\frac{1}{n-2}} \frac{(xy)^{\frac{-(n-1)}{n-2}}}{n-2}}. \end{aligned}$$

For maxima or minima, \(f_{x} =0\) and \(f_{y} = 0\), which gives \({x y^{\frac{1}{n-1}} = |\operatorname{det}(A)|^{\frac{1}{n-1}}}\) and \(y x^{\frac{1}{n-1}} = |\operatorname{det}(A)|^{\frac{1}{n-1}}\). Solving, we get \(x = |\operatorname{det}(A)|^{\frac{1}{n}}\) and \({y = |\operatorname{det}(A)|^{\frac{1}{n}}}\). At this point, the values of \(f_{xx}\), \(f_{yy}\), \(f_{xy}\), and \({\Delta= f_{xx}f_{yy} - (f_{xy})^{2}}\) are \({f_{xx}= f_{yy} = (\frac{n-1}{n-2} )|\operatorname{det}(A)|^{\frac{-1}{n}}}\), \({f_{xy} = \frac{1}{n-2}|\operatorname{det}(A)|^{\frac{-1}{n}}}\), and \(\Delta= (\frac{n}{n-2} )|\operatorname{det}(A)|^{\frac{-2}{n}} \geq0\) for all \(n \neq2\). The minimum value is \(f (|\operatorname{det}(A)|^{\frac{1}{n}}, |\operatorname{det}(A)|^{\frac {1}{n}} ) = n|\operatorname{det}(A)|^{\frac{1}{n}}\). However, \(|\operatorname{det}(A)|^{\frac{1}{n} }\leq\frac{2W}{n}\leq\rho_{1} \leq\sqrt {2M}\) and \(0 \leq\rho_{n} \leq|\operatorname{det}(A)|^{\frac{1}{n}} \leq\frac{2W}{n} \leq\sqrt{2M}\).

For \(W \geq n\), \(f(x,y)\) increases in the intervals \(|\operatorname{det}(A)|^{\frac{1}{n}} \leq\frac{2W}{n} \leq x \leq\sqrt{2M}\) and \(0 \leq y \leq|\operatorname{det}(A)|^{\frac{1}{n}} \leq\frac{W}{n} \leq\frac {2W}{n}\leq\sqrt{2M}\), that is, \(f(x,y)\) increases in the intervals \(|\operatorname{det}(A)|^{\frac{1}{n}} \leq\frac{2W}{n} \leq\rho_{1} \leq\sqrt{2M}\) and \(0 \leq\rho_{n} \leq|\operatorname{det}(A)|^{\frac{1}{n}} \leq\frac{W}{n} \leq \sqrt{2M}\). At \(\rho_{n} = \frac{W}{n}\), we have
$$f (\rho_{1},\rho_{n} ) \geq f \biggl(\frac{2W}{n}, \frac{W}{n} \biggr)\geq f \biggl(\frac{2W}{n}, \bigl\vert \operatorname{det}(A) \bigr\vert ^{\frac{1}{n}} \biggr)\geq f \bigl( \bigl\vert \operatorname{det}(A) \bigr\vert ^{\frac{1}{n}}, \bigl\vert \operatorname{det} (A) \bigr\vert ^{\frac{1}{n}} \bigr). $$
Therefore \({\mathcal{E}_{D}(G) \geq (\frac{W}{n} ) + (\frac {2W}{n} ) + \frac{(n-2)|\operatorname{det}(A)|^{\frac{1}{(n-2)}}}{ ( (\frac {W}{n} ) (\frac{2W}{n} ) )^{\frac{1}{(n-2)}}}}\). □

5 Brief summary and conclusion

In this paper, we established lower and upper bounds for the distance energy of a graph. Across the globe, attempts are being made by researchers to improve these bounds. The lower and upper bounds obtained in this paper improve the McClelland and Koolen–Moulton bounds for the distance energy of a graph.



We thank anonymous reviewers and editors of this manuscript for giving their inputs and suggestions in improving the quality of this paper.

Authors’ contributions

GS and MRR drafted the manuscript. RPK and DSN revised it. All authors read and approved the final manuscript.


Not applicable.

Competing interests

The authors declare that they have no competing interests.


  1. 1.
    Bozkurt, S.B., Gügör, A.D., Zhou, B.: Note on distance energy of graph. MATCH Commun. Math. Comput. Chem. 64, 129–134 (2010) MathSciNetGoogle Scholar
  2. 2.
    Cvetković, D., Gutman, I. (eds.): Applications of Graph Spectra. Mathematical Institution, Belgrade (2009) zbMATHGoogle Scholar
  3. 3.
    Cvetković, D., Gutman, I. (eds.): Selected Topics on Applications of Graph Spectra. Mathematical Institute, Belgrade (2011) zbMATHGoogle Scholar
  4. 4.
    Graovac, A., Gutman, I., Trinajstić, N.: Topological Approach to the Chemistry of Conjugated Molecules, vol. 4. Springer, Berlin (1977) zbMATHGoogle Scholar
  5. 5.
    Gutman, I.: The energy of a graph. Ber. Math. Stat. Sekt. Forschungsz. Graz. 103, 1–22 (1978) zbMATHGoogle Scholar
  6. 6.
    Gutman, I.: The energy of a graph: old and new. In: Betten, A., Kohnert, A., Laue, R., Wassermann, A. (eds.) Algebraic Combinatorics and Applications, pp. 196–211. Springer, Berlin (2001) CrossRefGoogle Scholar
  7. 7.
    Gutman, I., Polansky, O.E.: Mathematical Concepts in Organic Chemistry. Springer, Berlin (1986) CrossRefGoogle Scholar
  8. 8.
    Indulal, G., Gutman, I., Vijayakumar, A.: On the distance energy of graph. MATCH Commun. Math. Comput. Chem. 60, 461–472 (2008) MathSciNetzbMATHGoogle Scholar
  9. 9.
    Koolen, J.H., Moulton, V.: Maximal energy of graphs. Adv. Appl. Math. 26, 47–52 (2001) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Koolen, J.H., Moulton, V.: Maximal energy of bipartite graphs. Graphs Comb. 19, 131–135 (2003) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu, H., Lu, M., Tian, F.: Some upper bounds for the energy of graphs. J. Math. Chem. 41(1), 45–57 (2007) MathSciNetCrossRefGoogle Scholar
  12. 12.
    McClelland, B.J.: Properties of the latent root of a matrix: the estimation of π-electron energies. J. Chem. Phys. 54, 640–643 (1971) CrossRefGoogle Scholar
  13. 13.
    Ramane, H.S., Revankar, D.S., Gutman, I., Rao, S.B., Acharya, B.D., Walikar, H.B.: Bounds for distance energy of graph. Kragujev. J. Math. 31, 59–68 (2008) MathSciNetzbMATHGoogle Scholar
  14. 14.
    Zhou, B., Ilić, A.: On distance spectral radius and distance energy of graphs. MATCH Commun. Math. Comput. Chem. 64, 261–280 (2010) MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Post Graduate Department of MathematicsMaharani’s Science College for WomenMysoreIndia
  2. 2.Department of MathematicsSri.D. Devaraja Urs Governement First Grade CollegeHunsurIndia
  3. 3.Department of MathematicsMalnad College of EngineeringHassanIndia
  4. 4.Department of MathematicsUniversity of MysoreMysuruIndia

Personalised recommendations