# Equivalent conditions and applications of a class of Hilbert-type integral inequalities involving multiple functions with quasi-homogeneous kernels

Open Access
Research

## Abstract

Let $$K(x_{1},\ldots,x_{n})$$ satisfy
$$K(x_{1},\ldots,tx_{i},\ldots,x_{n})=t^{\lambda\lambda _{i}}K \bigl(t^{-\frac{\lambda_{i}}{\lambda_{1}}}x_{1},\ldots,x_{i}, \ldots,t^{-\frac {\lambda _{i}}{\lambda_{n}}}x_{n} \bigr)$$
for $$t>0$$. With this integral kernel, by using the method and technique of weight coefficients, the equivalent conditions and the best constant factors for the validity of Hilbert-type integral inequalities involving multiple functions are discussed. Finally, the applications of the integral inequalities are considered.

## Keywords

Hilbert-type integral inequality Quasi-homogeneous kernel Equivalent conditions Best constant factor

26D15 47A07

## 1 Introduction

Let $$x=(x_{1},\ldots,x_{n}), \mathbf{R}_{+}^{n}=\{x=(x_{1},\ldots ,x_{n}):x_{i}>0\ (i=1,\ldots,n)\},r>1,f(t)\geq0$$, and α be a constant. Set
$$L_{\alpha}^{r}(0,+\infty)= \biggl\{ f(t): \Vert f \Vert _{r,\alpha}= \biggl( \int_{0}^{+\infty}t^{\alpha}f^{r}(t)\,dt \biggr) ^{1/r}< +\infty \biggr\} .$$
If $$\sum_{i=1}^{n}\frac{1}{p_{i}}=1\ (p_{i}>1,i=1,\ldots,n),\alpha _{i}\in \mathbf{R},f_{i}(x_{i})\in L_{\alpha_{i}}^{p_{i}}(0,+\infty)$$$$(i=1,\ldots ,n),K(x_{1},\ldots,x_{n})\geq0$$, M is a constant, then we name the following inequality a Hilbert-type integral inequality:
$$\int_{\mathbf{R}_{+}^{n}}K(x_{1},\ldots,x_{n})\prod _{i=1}^{n}f_{i}(x_{i})\,dx_{1} \cdots \,dx_{n}\leq M\prod_{i=1}^{n} \Vert f_{i} \Vert _{p_{i},\alpha_{i}}.$$
An integral kernel $$K(x_{1},\ldots,x_{n})$$ is said to be a quasi-homogeneous function with parameters $$(\lambda,\lambda _{1},\ldots ,\lambda_{n})$$ if, for $$t>0$$,
$$K(x_{1},\ldots,tx_{i},\ldots,x_{n})=t^{\lambda\lambda _{i}}K \bigl(t^{-\frac{\lambda_{i}}{\lambda_{1}}}x_{1},\ldots,x_{i}, \ldots,t^{-\frac {\lambda _{i}}{\lambda_{n}}}x_{n} \bigr) \quad (i=1,\ldots,n).$$
Obviously, $$K(x_{1},\ldots,x_{n})$$ becomes a homogeneous function of order $$\lambda\lambda_{0}$$ when $$\lambda_{1}=\lambda_{2}=\cdots=\lambda _{n}=\lambda_{0}$$.

So far, many good results have been obtained in the study of Hilbert-type inequalities (cf. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]). What are the necessary and sufficient conditions for the validity of a Hilbert-type inequality? What is the best constant factor when the inequality holds? The research on such problems is undoubtedly of great significance to the study and applications of Hilbert-type inequality theory, but unfortunately, the research on this type of problems is rarely seen.

In this paper, we focus on the quasi-homogeneous integral kernels, discuss the equivalent conditions for the validity of Hilbert-type integral inequalities involving multiple functions, and obtain the expressions of the best constant factors when the inequalities are established. Finally, we discuss their applications.

## 2 Some lemmas

### Lemma 1

Let integer$$n\geq2,\sum_{i=1}^{n}\frac{1}{p_{i}}=1\ (p_{i}>1,i=1,\ldots,n),\lambda\in\mathbf{R},\alpha_{i}\in\mathbf {R},\lambda_{i}>0$$ (or$$\lambda_{i}<0$$) $$(i=1,\ldots,n)$$, and$$K(x_{1},\ldots,x_{n})$$be a nonnegative measurable function with parameters$$(\lambda,\lambda_{1},\ldots,\lambda_{n}),\sum_{i=1}^{n}\frac{\alpha _{i}+1}{\lambda_{i}p_{i}}=\lambda+\sum_{i=1}^{n}\frac{1}{\lambda_{i}}$$. Set
\begin{aligned} W_{j} ={}& \int_{\mathbf{R}_{+}^{n-1}}K(u_{1},\ldots,u_{j-1},1,u_{j+1}, \ldots,u_{n}) \\ &{}\times\prod_{i=1(i\neq j)}^{n}u_{i}^{-\frac{\alpha_{i}+1}{p_{i}}}\,du_{1} \cdots \,du_{j-1}\,du_{j+1}\cdots \,du_{n}. \end{aligned}
Then$$\frac{1}{\lambda_{1}}W_{1}=\frac{1}{\lambda_{2}}W_{2}=\cdots =\frac{1}{\lambda n}W_{n}$$, and
\begin{aligned} \omega_{j}(x_{j})& = \int_{\mathbf{R}_{+}^{n-1}}K(x_{1},\ldots,x_{n})\prod _{i=1(i\neq j)}^{n}x_{i}^{-\frac{\alpha_{i}+1}{p_{i}}}\,dx_{1} \cdots \,dx_{j-1}\,dx_{j+1}\cdots \,dx_{n} \\ &= x_{j}^{\lambda_{j} ( \lambda+\sum_{i=1(i\neq j)}^{n}\frac {\alpha _{i}+1}{\lambda_{i}p_{i}}+\sum_{i=1(i\neq j)}^{n}\frac{1}{\lambda_{i}} ) }W_{j}, \end{aligned}
where$$j=1,\ldots,n$$.

### Proof

When $$j\geq2$$, by $$\sum_{i=1}^{n}\frac{\alpha_{i}+1}{\lambda_{i}p_{i}}=\lambda+\sum_{i=1}^{n}\frac{1}{\lambda_{i}}$$,
\begin{aligned} W_{j} ={}& \int_{\mathbf{R}_{+}^{n-1}}u_{1}^{\lambda\lambda_{1}}K \biggl( 1,\frac{u_{2}}{u_{1}^{\frac{\lambda_{1}}{\lambda_{2}}}},\ldots,\frac {u_{j-1}}{u_{1}^{\frac{\lambda_{1}}{\lambda_{j-1}}}},\frac{1}{u_{1}^{\frac {\lambda _{1}}{\lambda_{j}}}}, \frac{u_{j+1}}{u_{1}^{\frac{\lambda_{1}}{\lambda _{j+1}}}},\ldots,\frac{u_{n}}{u_{1}^{\frac{\lambda_{1}}{\lambda _{n}}}} \biggr) \\ &{}\times\prod_{i=1(i\neq j)}^{n}u_{i}^{-\frac{\alpha_{i}+1}{p_{i}}}\,du_{1} \cdots \,du_{j-1}\,du_{j+1}\cdots \,du_{n} \\ ={}& \frac{\lambda_{j}}{\lambda_{1}} \int_{\mathbf{R}_{+}^{n-1}}K ( 1,t_{2},\ldots,t_{n} ) t_{j}^{\lambda_{j} ( -\lambda -\sum_{i=1}^{n}\frac{1}{\lambda_{i}}+\sum_{i=1(i\neq j)}^{n}\frac {\alpha _{i}+1}{\lambda_{i}p_{i}} ) } \\ &{}\times\prod_{i=2(i\neq j)}^{n}t_{i}^{-\frac{\alpha_{i}+1}{p_{i}}}\,dt_{2} \cdots \,dt_{n} \\ ={}& \frac{\lambda_{j}}{\lambda_{1}} \int_{\mathbf{R}_{+}^{n-1}}K ( 1,t_{2},\ldots,t_{n} ) t_{j}^{\lambda_{j} ( -\frac{\alpha _{j}+1}{\lambda_{j}p_{j}} ) }\prod_{i=2(i\neq j)}^{n}t_{i}^{-\frac{\alpha _{i}+1}{p_{i}}}\,dt_{2} \cdots \,dt_{n} \\ ={}& \frac{\lambda_{j}}{\lambda_{1}} \int_{\mathbf{R}_{+}^{n-1}}K ( 1,t_{2},\ldots,t_{n} ) \prod_{i=2}^{n}t_{i}^{-\frac{\alpha _{i}+1}{p_{i}}}\,dt_{2} \cdots \,dt_{n}=\frac{\lambda_{j}}{\lambda_{1}}W_{1}. \end{aligned}
Therefore $$\frac{1}{\lambda_{j}}W_{j}=\frac{1}{\lambda _{1}}W_{1}\ (j\geq2)$$. When $$j=1,\ldots,n$$, we also get
\begin{aligned} \omega_{j}(x_{j}) ={}& \int_{\mathbf{R}_{+}^{n-1}}x_{j}^{\lambda\lambda _{j}}K \biggl( \frac{x_{1}}{x_{j}^{\frac{\lambda_{j}}{\lambda 1}}},\ldots,\frac{x_{j-1}}{x_{j}^{\frac{\lambda_{j}}{\lambda_{j-1}}}},1,\frac {x_{j+1}}{x_{j}^{\frac{\lambda_{j}}{\lambda_{j+1}}}}, \ldots,\frac {x_{n}}{x_{j}^{\frac{\lambda_{j}}{\lambda_{n}}}} \biggr) \\ &{}\times\prod_{i=1(i\neq j)}^{n}x_{i}^{-\frac{\alpha_{i}+1}{p_{i}}}\,dx_{1} \cdots \,dx_{j-1}\,dx_{j+1}\cdots \,dx_{n} \\ ={}& x_{j}^{\lambda\lambda_{j}-\lambda_{j}\sum_{i=1(i\neq j)}^{n}\frac{ \alpha_{i}+1}{\lambda_{i}p_{i}}+\lambda_{j}\sum_{i=1(i\neq j)}^{n}\frac{1}{\lambda_{i}}} \\ &{}\times \int_{\mathbf{R}_{+}^{n-1}}K ( u_{1},\ldots,u_{j-1},1,u_{j+1} ,\ldots,u_{n} ) \\ &{}\times\prod_{i=1(i\neq j)}^{n}u_{i}^{-\frac{\alpha_{i}+1}{p_{i}}}\,du_{1} \cdots \,du_{j-1}\,du_{j+1}\cdots \,du_{n} \\ ={}& x_{j}^{\lambda_{j} ( \lambda+\sum_{i=1(i\neq j)}^{n}\frac {\alpha _{i}+1}{\lambda_{i}p_{i}}+\sum_{i=1(i\neq j)}^{n}\frac{1}{\lambda_{i}} ) }W_{j}. \end{aligned}
□

### Lemma 2

()

Let$$p_{i}>0,a_{i}>0,\alpha_{i}>0$$$$(i=1,\ldots,n),\psi(u)$$be measurable. Then
\begin{aligned} &\int\cdots \int_{x_{i}>0, ( \frac{x_{1}}{a_{1}} ) ^{\alpha _{1}}+\cdots+( \frac{x_{n}}{a_{n}} ) ^{\alpha_{n}}\leq1}\psi \biggl( \biggl( \frac{x_{1}}{a_{1}} \biggr) ^{\alpha_{1}}+\cdots+ \biggl( \frac{x_{n}}{a_{n}} \biggr) ^{\alpha_{n}} \biggr) \\ &\qquad{}\times x_{1}^{p_{1}-1}\cdots x_{n}^{p_{n}-1}\,dx_{1} \cdots \,dx_{n} \\ &\quad = \frac{a_{1}^{p_{1}}\cdots a_{n}^{p_{n}}\Gamma( \frac {p_{1}}{\alpha _{1}} ) \cdots\Gamma( \frac{p_{n}}{\alpha n} ) }{\alpha _{1}\cdots\alpha_{n}\Gamma( \frac{p_{1}}{\alpha_{1}}+\cdots +\frac{p_{n}}{\alpha n} ) } \int_{0}^{1}\psi(t)t^{\frac{p_{1}}{\alpha _{1}}+\cdots+\frac{p_{n}}{\alpha n}-1}\,dt, \end{aligned}
where Γ represents the gamma function.

## 3 Main results and their proofs

### Theorem 1

Suppose that$$n\geq2,\sum_{i=1}^{n}\frac{1}{p_{i}}=1\ (p_{i}>1),\lambda\in\mathbf{R},\lambda_{i}>0$$ (or$$\lambda _{i}<0$$), $$\alpha_{i}\in\mathbf{R}$$$$(i=1,\ldots,n)$$. If$$K(x_{1},\ldots ,x_{n})$$is a quasi-homogeneous positive function with parameters ($$\lambda ,\lambda_{1},\ldots,\lambda_{n}$$), and
$$W_{1}= \int_{\mathbf{R}_{+}^{n-1}}K(1,u_{2},\ldots,u_{n})\prod _{i=2}^{n}u_{i}^{-\frac{\alpha_{i}+1}{p_{i}}}\,du_{2} \cdots \,du_{n}$$
is convergent, then
1. (i)
the inequality
$$\int_{\mathbf{R}_{+}^{n}}K(x_{1},\ldots,x_{n})\prod _{i=1}^{n}f_{i}(x_{i})\,dx_{1} \cdots \,dx_{n}\leq M\prod_{i=1}^{n} \Vert f_{i} \Vert _{p_{i},\alpha_{i}}$$
(1)
holds for some constant$$M>0$$if and only if$$\sum_{i=1}^{n}\frac{\alpha _{i}+1}{\lambda_{i}p_{i}}=\lambda+\sum_{i=1}^{n}\frac{1}{\lambda_{i}}$$, where$$f_{i}(x_{i})\in L_{\alpha_{i}}^{p_{i}}(0,+\infty)$$$$(i=1,\ldots ,n)$$;

2. (ii)

if (1) holds, then its best constant factor is$$\inf M=\frac {W_{1}}{|\lambda_{1}|}\prod_{i=1}^{n}|\lambda_{i}|^{1/p_{i}}$$.

### Proof

(i) Sufficiency. Assume that $$\sum_{i=1}^{n}\frac{\alpha _{i}+1}{\lambda_{i}p_{i}}=\lambda+\sum_{i=1}^{n}\frac{1}{\lambda_{i}}$$. Since
$$\prod_{j=1}^{n}x_{j}^{\frac{\alpha_{j}+1}{p_{j}}} \Biggl( \prod_{i=1}^{n}x_{i}^{-\frac{\alpha_{i}+1}{p_{i}}} \Biggr) ^{1/p_{j}}=\prod_{j=1}^{n}x_{j}^{\frac{\alpha_{j}+1}{p_{j}}} \prod_{i=1}^{n}x_{i}^{-\frac{\alpha_{i}+1}{p_{i}}\sum_{k=1}^{n}\frac {1}{p_{k}}}=1,$$
by Hölder’s inequality and Lemma 1, we obtain
\begin{aligned} &\int_{\mathbf{R}_{+}^{n}}K(x_{1},\ldots,x_{n})\prod _{i=1}^{n}f_{i}(x_{i})\,dx_{1} \cdots \,dx_{n} \\ &\quad= \int_{\mathbf{R}_{+}^{n}}K(x_{1},\ldots,x_{n}) \Biggl[ \prod_{j=1}^{n}x_{j}^{\frac{\alpha_{j}+1}{p_{j}}} \Biggl( \prod_{i=1}^{n}x_{i}^{-\frac{\alpha_{i}+1}{p_{i}}} \Biggr) ^{1/p_{j}}f_{j}(x_{j}) \Biggr] \,dx_{1}\cdots \,dx_{n} \\ &\quad \leq\prod_{j=1}^{n} \Biggl[ \int_{\mathbf{R}_{+}^{n}}x_{j}^{\alpha _{j}+1} \Biggl( \prod _{i=1}^{n}x_{i}^{-\frac{\alpha_{i}+1}{p_{i}}} \Biggr) f_{j}^{p_{j}}(x_{j})K(x_{1}, \ldots,x_{n})\,dx_{1}\cdots \,dx_{n} \Biggr] ^{1/p_{j}} \\ &\quad= \prod_{j=1}^{n} \Biggl[ \int_{0}^{+\infty}x_{j}^{\alpha_{j}+1-\frac{\alpha_{j}+1}{p_{j}}}f_{j}^{p_{j}}(x_{j}) \\ &\qquad{}\times \Biggl( \int_{\mathbf{R}_{+}^{n-1}}K(x_{1},\ldots,x_{n})\prod _{i=1(i\neq j)}^{n}x_{i}^{-\frac{\alpha_{i}+1}{p_{i}}}\,dx_{1} \cdots \,dx_{j-1}\,dx_{j+1}\cdots \,dx_{n} \Biggr) \,dx_{j} \Biggr] ^{1/p_{j}} \\ &\quad= \prod_{j=1}^{n} \biggl( \int_{0}^{+\infty}x_{j}^{\alpha_{j}+1-\frac{\alpha_{j}+1}{p_{j}}}f_{j}^{p_{j}}(x_{j}) \omega_{j}(x_{j})\,dx_{j} \biggr) ^{1/p_{j}} \\ &\quad= \prod_{j=1}^{n} \biggl[ \int_{0}^{+\infty}x_{j}^{\alpha_{j}+1-\frac {\alpha _{j}+1}{p_{j}}+\lambda_{j} ( \lambda-\sum_{i=1(i\neq j)}^{n}\frac{ \alpha_{i}+1}{\lambda_{i}p_{i}}+\sum_{i=1(i\neq j)}^{n}\frac {1}{\lambda _{i}} ) }f_{j}^{p_{j}}(x_{j})W_{j}\,dx_{j} \biggr]^{1/p_{j}} \\ &\quad= \prod_{j=1}^{n}W_{j}^{1/p_{j}} \prod_{j=1}^{n} \biggl[ \int_{0}^{+\infty }x_{j}^{\lambda_{j} ( \frac{\alpha_{j}}{\lambda_{j}}-\sum _{i=1}^{n}\frac{\alpha_{i}+1}{\lambda_{i}p_{i}}+\lambda+\sum_{i=1}^{n}\frac{1}{ \lambda_{i}} ) }f_{j}^{p_{j}}(x_{j})\,dx_{j} \biggr]^{1/p_{j}} \\ &\quad= \prod_{i=1}^{n}W_{i}^{1/p_{i}} \prod_{i=1}^{n} \biggl( \int_{0}^{+\infty }x_{i}^{\alpha_{i}}f_{i}^{p_{i}}(x_{i})\,dx_{i} \biggr) ^{1/p_{i}} \\ &\quad = \frac{W_{1}}{ \vert \lambda_{1} \vert } \Biggl( \prod_{i=1}^{n} \vert \lambda_{i} \vert ^{1/p_{i}} \Biggr) \prod _{i=1}^{n} \Vert f_{i} \Vert _{p_{i},\alpha_{i}}, \end{aligned}
thus (1) holds when taking any constant $$M\geq\frac {W_{1}}{|\lambda _{1}|}\prod_{i=1}^{n}|\lambda_{i}|^{1/p_{i}}$$.

Necessity. Assume that (1) holds. Set $$c=\sum_{i=1}^{n}\frac {\alpha _{i}+1}{\lambda_{i}p_{i}}-\lambda-\sum_{i=1}^{n}\frac{1}{\lambda_{i}}$$. Next we will prove $$c=0$$.

First consider the case of $$\lambda_{i}>0\ (i=1,\ldots,n)$$. If $$c>0$$, for $$0<\varepsilon<c$$, take
$$f_{i}(x_{i})= \textstyle\begin{cases} x{}_{i}^{(-\alpha_{i}-1+\lambda_{i}\varepsilon)/p_{i}}, & 0< x_{i}\leq1, \\ 0, & x_{i}>1,\end{cases}$$
where $$i=1,\ldots,n$$. Then
\begin{aligned} &\prod_{i=1}^{n} \Vert f_{i} \Vert _{p_{i},\alpha_{i}}=\prod_{i=1}^{n} \biggl( \int_{0}^{1}x_{i}^{-1+\lambda_{i}\varepsilon} \, dx_{i} \biggr) ^{1/p_{i}}=\frac{1}{\varepsilon{}}\prod _{i=1}^{n} \biggl( \frac {1}{\lambda _{i}{}} \biggr) ^{1/p_{i}}, \end{aligned}
(2)
\begin{aligned} &\int_{\mathbf{R}_{+}^{n}}K(x_{1},\ldots,x_{n})\prod _{i=1}^{n}f_{i}(x_{i})\,dx_{1}\cdots\,dx_{n} \\ &\quad= \int_{0}^{1}x_{1}^{(-\alpha_{1}-1+\lambda_{1}\varepsilon)/p_{1}} \\ &\qquad{}\times \Biggl( \int_{0}^{1}\cdots \int_{0}^{1}K(x_{1},x_{2}, \ldots,x_{n})\prod_{i=2}^{n}x_{i}^{(-\alpha_{i}-1+\lambda _{i}\varepsilon )/p_{i}}\,dx_{2}\cdots\,dx_{n} \Biggr) \, dx_{1} \\ &\quad= \int_{0}^{1}x_{1}^{(-\alpha_{1}-1+\lambda_{1}\varepsilon )/p_{1}+\lambda\lambda_{1}} \Biggl( \int_{0}^{1}\cdots \int_{0}^{1}K \bigl(1,x_{1}^{-\frac{\lambda_{1}}{\lambda_{2}}}x_{2}, \ldots,x_{1}^{-\frac{\lambda_{1}}{\lambda n}}x_{n} \bigr) \\ &\qquad{}\times\prod_{i=2}^{n}x_{i}^{(-\alpha_{i}-1+\lambda _{i}\varepsilon)/p_{i}} \,dx_{2}\cdots\,dx_{n} \Biggr) \,{d}x_{1} \\ &\quad= \int_{0}^{1}x_{1}^{-\frac{\alpha_{1}+1-\lambda_{1}\varepsilon }{p_{1}}+\lambda\lambda_{1}+\lambda_{1}\sum_{i=2}^{n}\frac{1}{\lambda_{i}}-\lambda_{1}\sum_{i=2}^{n}\frac{\alpha_{i}+1-\lambda_{i}\varepsilon }{\lambda_{i}p_{i}}} \Biggl( \int_{0}^{x_{1}^{-\lambda_{1}/\lambda _{2}}}\cdots \int_{0}^{x_{n}^{-\lambda_{1}/\lambda_{n}}} \\ &\qquad{}\times K(1,u_{2},\ldots,u_{n})\prod _{i=2}^{n}u_{i}^{(-\alpha _{i}-1+\lambda_{i}\varepsilon)/p_{i}} \, du_{2}\cdots\,du_{n} \Biggr) \, dx_{1} \\ &\quad = \int_{0}^{1}x_{1}^{\lambda_{1} ( \lambda+\sum_{i=1}^{n}\frac {1}{\lambda_{i}}-\sum_{i=1}^{n}\frac{\alpha_{i}+1}{\lambda _{i}p_{i}}-\frac{1}{\lambda_{1}}+\varepsilon) } \Biggl( \int_{0}^{x_{1}^{-\lambda _{1}/\lambda_{2}}}\cdots \int_{0}^{x_{n}^{-\lambda_{1}/\lambda _{n}}} \\ &\qquad{}\times K(1,u_{2},\ldots,u_{n})\prod _{i=2}^{n}u_{i}^{(-\alpha _{i}-1+\lambda_{i}\varepsilon)/p_{i}} \, du_{2}\cdots\,du_{n} \Biggr) \, dx_{1} \\ &\quad\geq \int_{0}^{1}x_{1}^{-1-\lambda_{1}c+\lambda_{1}\varepsilon } \,{d}x_{1} \Biggl( \int_{0}^{1}\cdots \int_{0}^{1}K(1,u_{2},\ldots ,u_{n}) \\ &\qquad{}\times\prod_{i=2}^{n}u_{i}^{(-\alpha_{i}-1+\lambda _{i}\varepsilon)/p_{i}} \,du_{2}\cdots\,du_{n} \Biggr). \end{aligned}
(3)
It follows from (1), (2), and (3) that
\begin{aligned} &\int_{0}^{1}x_{1}^{-1-\lambda_{1}c+\lambda_{1}\varepsilon}\, {d}x_{1} \Biggl( \int_{0}^{1}\cdots \int_{0}^{1}K(1,u_{2},\ldots ,u_{n}) \prod_{i=2}^{n}u_{i}^{(-\alpha_{i}-1+\lambda _{i}\varepsilon)/p_{i}} \,du_{2}\cdots\,du_{n} \Biggr) \\ &\quad \leq\frac{M}{\varepsilon}\prod_{i=1}^{n} \biggl( \frac{1}{\lambda _{i}{}} \biggr) ^{1/p_{i}}. \end{aligned}
(4)
Since $$-1-\lambda_{1}c+\lambda_{1}\varepsilon<-1$$, $$\int_{0}^{1}x_{1}^{-1-\lambda_{1}c+\lambda_{1}\varepsilon}\, {d}x_{1}$$ diverges to +∞. Whence it is a contradiction to (4). In other words, it is not valid for $$c>0$$.
If $$c<0$$, for $$0<\varepsilon<-c$$, take
$$f_{i}(x_{i})= \textstyle\begin{cases} x{}_{i}^{(-\alpha_{i}-1-\lambda_{i}\varepsilon)/p_{i}}, & x_{i}\geq 1, \\ 0, & 0< x_{i}< 1,\end{cases}$$
where $$i=1,\ldots,n$$. Similarly, we get
\begin{aligned} &\int_{1}^{+\infty}x_{1}^{-1+\lambda_{1}c-\lambda_{1}\varepsilon}\,dx_{1} \\ &\qquad{}\times \Biggl( \int_{1}^{+\infty}\cdots \int_{1}^{+\infty }K(1,u_{2}, \ldots,u_{n})\prod_{i=2}^{n}u_{i}^{(-\alpha_{i}-1-\lambda _{i}\varepsilon)/p_{i}} \,du_{2}\cdots\,du_{n} \Biggr) \\ &\quad \leq\frac{M}{\varepsilon}\prod_{i=1}^{n} \biggl( \frac{1}{\lambda _{i}{}} \biggr) ^{1/p_{i}}. \end{aligned}
(5)
Since $$-1-\lambda_{1}c+ \lambda_{1}\varepsilon>-1$$ and $$\int_{1}^{+\infty }x_{1}^{-1-\lambda_{1}c-\lambda_{1}\varepsilon} \,dx_{1}$$ diverges to +∞, which contradicts the above inequality, hence it does not hold for $$c<0$$.

To sum up, we have $$c=0$$ for $$\lambda_{i}>0\ ( i=1,\ldots,n )$$.

Now let us consider the case of $$\lambda_{i}<0\ ( i=1,\ldots,n )$$. If $$c>0$$, for $$0< \varepsilon<c$$, take
$$f_{i}(x_{i})= \textstyle\begin{cases} x{}_{i}^{(-\alpha_{i}-1+\lambda_{i}\varepsilon)/p_{i}}, & x_{i}\geq 1, \\ 0, & 0< x_{i}< 1,\end{cases}$$
where $$i=1,\ldots,n$$. Consequently,
\begin{aligned} &\prod_{i=1}^{n} \Vert f_{i} \Vert _{p_{i},\alpha_{i}}=\prod_{i=1}^{n} \biggl( \int_{1}^{+\infty}x_{i}^{-1+\lambda_{i}\varepsilon}\, {d}x_{i} \biggr) ^{1/p_{i}}=\frac{1}{\varepsilon}\prod _{i=1}^{n} \biggl( \frac{1}{-\lambda _{i}{}} \biggr) ^{1/p{}_{i}}{}, \end{aligned}
(6)
\begin{aligned} &\int_{\mathbf{R}_{+}^{n}}K(x_{1},\ldots,x_{n})\prod _{i=1}^{n}f_{i}(x_{i})\,dx_{1}\cdots\,dx_{n} \\ &\quad= \int_{1}^{+\infty}x_{1}^{(-\alpha_{1}-1+\lambda_{1}\varepsilon )/p_{1}} \Biggl( \int_{1}^{+\infty}\cdots \int_{1}^{+\infty }x_{1}^{\lambda \lambda_{1}}K \bigl(1,x_{1}^{-\frac{\lambda_{1}}{\lambda_{2}}}x_{2},\ldots ,x_{1}^{-\frac{\lambda_{1}}{\lambda_{n}}}x_{n} \bigr) \\ &\qquad{}\times\prod_{i=2}^{n}x_{i}^{(-\alpha_{i}-1+\lambda _{i}\varepsilon)/p_{i}} \,dx_{2}\cdots\,dx_{n} \Biggr) \,{d}x_{1} \\ &\quad= \int_{1}^{+\infty}x_{1}^{-\frac{\alpha_{1}+1-\lambda _{1}\varepsilon}{p_{1}}+\lambda\lambda_{1}+\lambda_{1}\sum_{i=2}^{n}\frac{1}{\lambda _{i}}-\lambda_{1}\sum_{i=2}^{n}\frac{\alpha_{i}+1-\lambda_{i}\varepsilon }{\lambda_{i}p_{i}}} \Biggl( \int_{x_{1}^{-\lambda_{1}/\lambda _{2}}}^{+\infty }\cdots \int_{x_{n}^{-\lambda_{1}/\lambda_{n}}}^{+\infty} \\ &\qquad{}\times K(1,u_{2},\ldots,u_{n})\prod _{i=2}^{n}u_{i}^{(-\alpha _{i}-1+\lambda_{i}\varepsilon)/p_{i}} \, du_{2}\cdots\,du_{n} \Biggr) \, dx_{1} \\ &\quad\geq \int_{1}^{+\infty}x_{1}^{-1-\lambda_{1}c+\lambda _{1}\varepsilon}\,dx_{1} \Biggl( \int_{1}^{+\infty}\cdots \int_{1}^{+\infty }K(1,u_{2}, \ldots,u_{n}) \\ &\qquad{}\times\prod_{i=2}^{n}u_{i}^{(-\alpha_{i}-1+\lambda _{i}\varepsilon)/p_{i}} \,du_{2}\cdots\,du_{n} \Biggr). \end{aligned}
(7)
It follows from (1), (6), and (7) that
\begin{aligned} &\int_{1}^{+\infty}x_{1}^{-1-\lambda_{1}c+\lambda_{1}\varepsilon}\,dx_{1} \\ &\qquad{}\times \Biggl( \int_{1}^{+\infty}\cdots \int_{1}^{+\infty }K(1,u_{2}, \ldots,u_{n})\prod_{i=2}^{n}u_{i}^{(-\alpha_{i}-1+\lambda _{i}\varepsilon)/p_{i}} \,du_{2}\cdots\,du_{n} \Biggr) \\ &\quad \leq\frac{M}{\varepsilon}\prod_{i=1}^{n} \biggl( \frac{1}{-\lambda _{i}{}} \biggr) ^{1/p_{i}}. \end{aligned}
(8)
Since $$-1-\lambda_{1}c+\lambda_{1}\varepsilon>-1$$, $$\int_{1}^{+\infty }x_{1}^{-1-\lambda_{1}c+\lambda_{1}\varepsilon}\,dx_{1}$$ diverges to +∞. Thus it is a contradiction to the above inequality. That is, it does not hold for $$c>0$$.
If $$c<0$$, for $$0<\varepsilon<-c$$, take
$$f_{i}(x_{i})= \textstyle\begin{cases} x{}_{i}^{(-\alpha_{i}-1-\lambda_{i}\varepsilon)/p_{i}}, & 0< x_{i}\leq1, \\ 0, & x_{i}>1,\end{cases}$$
where $$i=1,\ldots,n$$. Similarly, one can get
\begin{aligned} &\int_{0}^{1}x_{1}^{-1-\lambda_{1}c-\lambda_{1}\varepsilon} \, dx_{1} \Biggl( \int_{0}^{1}\cdots \int_{0}^{1}K(1,u_{2},\ldots ,u_{n}) \\ &\qquad{}\times\prod_{i=2}^{n}u_{i}^{(-\alpha_{i}-1-\lambda _{i}\varepsilon)/p_{i}} \,du_{2}\cdots\,du_{n} \Biggr) \\ &\quad \leq\frac{M}{\varepsilon}\prod_{i=1}^{n} \biggl( \frac{1}{-\lambda _{i}{}} \biggr) ^{1/p_{i}}. \end{aligned}
(9)
Since $$-1-\lambda_{1}c- \lambda_{1}\varepsilon<-1$$, $$\int_{0}^{1}x_{1}^{-1-\lambda_{1}c-\lambda_{1}\varepsilon}\, {d}x_{1}$$ diverges to +∞, which also contradicts the above inequality. It does not hold for $$c<0$$.

To sum up, we also get $$c=0$$ for $$\lambda_{i}<0$$$$(i=1,\ldots,n)$$.

(ii) Suppose that (1) holds. If the constant factor $$\inf M\neq\frac{W_{1}}{|\lambda_{1}|} \prod_{i=1}^{n}|\lambda_{i}|^{1/p_{i}}$$, then there exists a constant $$M_{0}<\frac{W_{1}}{|\lambda_{1}|}\prod_{i=1}^{n}|\lambda_{i}|^{1/p_{i}}$$ such that
$$\int_{\mathbf{R}_{+}^{n}}K(x_{1},\ldots,x_{n})\prod _{i=1}^{n}f_{i}(x_{i})\,dx_{1}\cdots\,dx_{n}\leq M_{0} \prod_{i=1}^{n} \Vert f_{i} \Vert _{p_{i},\alpha_{i}}.$$
For sufficiently small $$\varepsilon>0$$ and $$\delta>0$$, take
$$f_{1}(x_{1})= \textstyle\begin{cases} x{}_{1}^{(-\alpha_{1}-1-|\lambda_{1}|\varepsilon)/p_{1}}, & x_{1}\geq1, \\ 0, & 0< x_{1}< 1.\end{cases}$$
For $$i=2,3,\ldots,n$$, take
$$f_{i}(x_{i})= \textstyle\begin{cases} x{}_{i}^{(-\alpha_{i}-1-|\lambda_{i}|\varepsilon)/p_{i}}, & x_{i}\geq \delta, \\ 0, & 0< x_{i}< \delta.\end{cases}$$
Therefore,
\begin{aligned} &\prod_{i=1}^{n} \Vert f_{i} \Vert _{p_{i},\alpha_{i}} \\ &\quad= \biggl( \int_{1}^{+\infty }x{}_{1}^{-1- \vert \lambda_{1} \vert \varepsilon} \, dx_{1} \biggr) ^{1/p_{1}}\prod _{i=2}^{n} \biggl( \int_{\delta}^{+\infty }x_{i}^{1- \vert \lambda _{i} \vert \varepsilon} \, dx_{i} \biggr) ^{1/p_{i}} \\ &\quad= \biggl( \frac{1}{ \vert \lambda_{1} \vert \varepsilon} \biggr) ^{1/p_{1}}\prod _{i=2}^{n} \biggl( \frac{1}{ \vert \lambda_{i} \vert \varepsilon }\cdot \frac{1}{\delta^{ \vert \lambda_{i} \vert \varepsilon}} \biggr) ^{1/p_{i}} \\ &\quad= \frac{1}{\varepsilon}\prod_{i=1}^{n} \biggl( \frac{1}{ \vert \lambda_{i} \vert } \biggr) ^{1/p_{i}}\prod _{i=2}^{n} \biggl( \frac{1}{\delta^{ \vert \lambda _{i} \vert \varepsilon}} \biggr) ^{1/p_{i}}, \end{aligned}
(10)
\begin{aligned} &\int_{\mathbf{R}_{+}^{n}}K(x_{1},\ldots,x_{n})\prod _{i=1}^{n}f_{i}(x_{i})\,dx_{1}\cdots\,dx_{n} \\ &\quad= \int_{0}^{1}x_{1}^{-\frac{\alpha_{1}+1+|\lambda_{1}|\varepsilon }{p_{1}}} \Biggl( \int_{\delta}^{+\infty}\cdots \int_{\delta}^{+\infty }K(x_{1}, \ldots,x_{n}) \\ &\qquad{}\times\prod_{i=2}^{n}x_{i}^{-\frac{\alpha_{i}+1+|\lambda _{i}|\varepsilon}{p_{i}}} \,dx_{2}\cdots\,dx_{n} \Biggr) \, dx_{1} \\ &\quad= \int_{0}^{1}x{}_{1}^{\lambda\lambda_{1}-\frac{\alpha _{1}+1+|\lambda _{1}|\varepsilon}{p_{1}}} \Biggl( \int_{\delta}^{+\infty}\cdots \int_{\delta}^{+\infty}K \bigl(1,x_{1}^{-\lambda_{1}/\lambda _{2}}x_{2}, \ldots,x_{1}^{-\lambda_{1}/\lambda_{n}}x_{n} \bigr) \\ &\qquad{}\times\prod_{i=2}^{n}x_{i}^{-\frac{\alpha_{i}+1+|\lambda _{i}|\varepsilon}{p_{i}}} \,dx_{2}\cdots\,dx_{n} \Biggr) \, dx_{1} \\ &\quad= \int_{1}^{+\infty}x_{1}^{\lambda\lambda_{1}-\frac{\alpha _{1}+1+|\lambda_{1}|\varepsilon}{p_{1}}-\lambda_{1}\sum _{i=2}^{n}\frac{\alpha_{i}+1+|\lambda_{i}|\varepsilon}{\lambda_{i}p_{i}}+\sum _{i=2}^{n}\frac{\lambda_{1}}{\lambda_{i}}} \Biggl( \int_{\delta x_{1}^{-\lambda _{1}/\lambda_{2}}}^{+\infty}\cdots \int_{\delta x_{n}^{-\lambda _{1}/\lambda_{n}}}^{+\infty} \\ &\qquad{}\times K(1,u_{2},\ldots,u_{n})\prod _{i=2}^{n}u_{i}^{-\frac {\alpha _{i}+1+|\lambda_{i}|\varepsilon}{p_{i}}} \, du_{2}\cdots\,du_{n} \Biggr) \, dx_{1} \\ &\quad\geq \int_{1}^{+\infty}x_{1}^{\lambda_{1} ( \lambda-\sum _{i=1}^{n}\frac{\alpha_{i}+1}{\lambda_{i}p_{i}}+\sum_{i=1}^{n}\frac{1}{\lambda _{i}}-\frac{1}{\lambda_{1}}-\sum_{i=1}^{n}\frac{|\lambda_{i}|\varepsilon}{\lambda_{i}p_{i}} ) } \, dx_{1} \Biggl( \int_{\delta}^{+\infty }\cdots \int_{\delta}^{+\infty} \\ &\qquad{}\times K(1,u_{2},\ldots,u_{n})\prod _{i=2}^{n}u_{i}^{-\frac {\alpha _{i}+1+|\lambda_{i}|\varepsilon}{p_{i}}} \, du_{2}\cdots\,du_{n} \Biggr) \\ &\quad= \int_{1}^{+\infty}x_{1}^{-1- \vert \lambda_{1} \vert \varepsilon} \, dx_{1} \Biggl( \int_{\delta}^{+\infty}\cdots \int_{\delta}^{+\infty }K(1,u_{2}, \ldots,u_{n}) \times\prod_{i=2}^{n}u_{i}^{-\frac{\alpha_{i}+1+ \vert \lambda _{i} \vert \varepsilon}{p_{i}}} \,du_{2}\cdots\,du_{n} \Biggr) \\ &\quad= \frac{1}{ \vert \lambda_{1} \vert \varepsilon} \int_{\delta}^{+\infty}\cdots \int_{\delta}^{+\infty}K(1,u_{2}, \ldots,u_{n})\prod_{i=2}^{n}u_{i}^{- \frac{\alpha_{i}+1+ \vert \lambda_{i} \vert \varepsilon}{p_{i}}} \,du_{2}\cdots\,du_{n}. \end{aligned}
(11)
It follows from (1), (10), and (11) that
\begin{aligned} &\frac{1}{ \vert \lambda_{1} \vert } \int_{\delta}^{+\infty}\cdots \int_{\delta }^{+\infty}K(1,u_{2}, \ldots,u_{n})\prod_{i=2}^{n}u_{i}^{-\frac{\alpha _{i}+1+ \vert \lambda_{i} \vert \varepsilon}{p_{i}}} \,du_{2}\cdots\,du_{n} \\ &\quad \leq M_{0}\prod_{i=1}^{n} \biggl( \frac{1}{ \vert \lambda_{i} \vert } \biggr) ^{1/p_{i}}\prod _{i=2}^{n} \biggl( \frac{1}{\delta^{ \vert \lambda _{i} \vert \varepsilon}} \biggr) ^{1/p_{i}}. \end{aligned}
Consequently,
$$\frac{1}{ \vert \lambda_{1} \vert }\prod_{i=1}^{n} \vert \lambda_{i} \vert ^{1/p_{i}} \int_{\delta }^{+\infty}\cdots \int_{\delta}^{+\infty}K(1,u_{2},\ldots ,u_{n})\prod_{i=2}^{n}u_{i}^{-(\alpha_{i}+1)/p_{i}} \,du_{2}\cdots\,du_{n}\leq M_{0}$$
as $$\varepsilon\rightarrow0^{+}$$. And then let $$\delta\rightarrow 0^{+}$$, we eventually get
\begin{aligned} &\frac{W_{1}}{ \vert \lambda_{1} \vert }\prod_{i=1}^{n} \vert \lambda_{i} \vert ^{1/p_{i}} \\ &\quad= \frac{1}{ \vert \lambda_{1} \vert }\prod_{i=1}^{n} \vert \lambda_{i} \vert ^{1/p_{i}} \int_{ \mathbf{R}_{+}^{n-1}}K(1,u_{2},\ldots,u_{n})\prod _{i=2}^{n}u_{i}^{-(\alpha _{i}+1)/p_{i}} \,du_{2}\cdots\,du_{n} \\ &\quad \leq M_{0}, \end{aligned}
this is a contradiction. Hence $$\inf M=\frac{W_{1}}{|\lambda_{1}|}\prod_{i=1}^{n}|\lambda_{i}|^{1/p_{i}}$$, i.e., the constant factor $$\frac{W_{1}}{|\lambda_{1}|}\prod_{i=1}^{n}|\lambda_{i}|^{1/p_{i}}$$ is the best. □

## 4 Applications

### Theorem 2

Suppose that$$n\geq2,\sum_{i=1}^{n}\frac {1}{p_{i}}=1\ (p_{i}>1),\lambda_{i}>0$$ (or$$\lambda_{i}<0$$), $$f_{i}(x_{i})\in L_{p_{i}-1}^{p_{i}}(0,+\infty), i=1,\ldots,n$$. Then
$$\int_{\mathbf{R}_{+}^{n}}\frac{\min\{x_{1}^{\lambda_{1}},\ldots ,x_{n}^{\lambda_{n}}\}}{\max\{x_{1}^{\lambda_{1}},\ldots ,x_{n}^{\lambda _{n}}\}}\prod_{i=1}^{n}f_{i}(x_{i}) \,dx_{1}\cdots\,dx_{n}\leq \Biggl( n!\prod _{i=1}^{n} \vert \lambda_{i} \vert ^{\frac{1}{p_{i}}-1} \Biggr) \prod_{i=1}^{n} \Vert f_{i} \Vert _{p_{i},p_{i}-1},$$
where the constant factor is the best.

### Proof

Set $$\alpha_{i}=p_{i}-1,\lambda=0$$, then $$\sum_{i=1}^{n} \frac{\alpha_{i}+1}{\lambda_{i}p_{i}}=\lambda+\sum_{i=1}^{n}\frac{1}{ \lambda_{i}}$$. Take
$$K(x_{1},\ldots,x_{n})=\frac{\min\{x_{1}^{\lambda_{1}},\ldots ,x_{n}^{\lambda_{n}}\}}{\max\{x_{1}^{\lambda_{1}},\ldots ,x_{n}^{\lambda _{n}}\}},$$
then $$K(x_{1},\ldots,x_{n})$$ is a quasi-homogeneous positive function with parameters $$(\lambda,\lambda_{1},\ldots,\lambda_{n})$$, and
\begin{aligned} W_{1} &= \int_{\mathbf{R}_{+}^{n-1}}K(1,u_{2},\ldots,u_{n})\prod _{i=2}^{n}u_{i}^{-(\alpha_{i}+1)/p_{i}} \,du_{2}\cdots\,du_{n} \\ &= \int_{\mathbf{R}_{+}^{n-1}}\frac{\min\{1,u_{2}^{\lambda_{2}},\ldots ,u_{n}^{\lambda_{n}}\}}{\max\{1,u_{2}^{\lambda_{2}},\ldots ,u_{n}^{\lambda_{n}}\}}\prod_{i=2}^{n}u_{i}^{-1} \,du_{2}\cdots\,du_{n} \\ &= \prod_{i=2}^{n}\frac{1}{ \vert \lambda_{i} \vert } \int_{\mathbf {R}_{+}^{n-1}}\frac{\min\{1,t_{2},\ldots,t_{n}\}}{\max\{1,t_{2},\ldots,t_{n}\}}\prod _{i=2}^{n}t_{i}^{-1} \, dt_{2}\cdots\,dt_{n}. \end{aligned}
In view of , we get
$$\int_{\mathbf{R}_{+}^{n-1}}\frac{\min\{1,t_{2},\ldots,t_{n}\}}{\max \{1,t_{2},\ldots,t_{n}\}}\prod_{i=2}^{n}t_{i}^{-1} \,dt_{2}\cdots\,dt_{n}=n!,$$
it follows that
$$\frac{W_{1}}{ \vert \lambda_{1} \vert }\prod_{i=1}^{n} \vert \lambda_{i} \vert ^{\frac {1}{p_{i}}}=n!\frac{1}{ \vert \lambda_{1} \vert } \prod _{i=2}^{n} \vert \lambda _{i} \vert ^{-1}\prod_{i=1}^{n} \vert \lambda_{i} \vert ^{\frac{1}{p_{i}}}=n!\prod _{i=1}^{n} \vert \lambda_{i} \vert ^{\frac{1}{p_{i}}-1}.$$
According to Theorem 1, we know that Theorem 2 holds. □

### Theorem 3

Suppose that$$n\geq2,\sum_{i=1}^{n}\frac {1}{p_{i}}=1\ (p_{i}>1),a>0,\lambda_{i}>0$$, $$\alpha_{i}\in\mathbf {R},p_{i}>1+\alpha _{i}$$. Then
1. (i)
the inequality
$$\int_{\mathbf{R}_{+}^{n}}\frac{1}{ ( x_{1}^{\lambda _{1}}+x_{2}^{\lambda _{2}}+\cdots+x_{n}^{\lambda_{n}} ) ^{a}}\prod_{i=1}^{n}x_{i}^{-\frac{\alpha_{i}+1}{p_{i}}} \,dx_{1}\cdots\,dx_{n}\leq M\prod _{i=1}^{n} \Vert f_{i} \Vert _{p_{i},\alpha_{i}}$$
(12)
holds for some constant$$M>0$$if and only if$$\sum_{i=1}^{n}\frac{\alpha _{i}+1}{\lambda_{i}p_{i}}=-a+\sum_{i=1}^{n}\frac{1}{\lambda_{i}}$$.

2. (ii)
if (12) holds, then its best constant factor is
$$\inf M=\frac{1}{\Gamma(a)}\prod_{i=1}^{n} \lambda_{i}{}^{\frac {1}{p_{i}}-1}\prod_{i=1}^{n} \Gamma \biggl( \frac{1}{\lambda_{i}} \biggl( 1-\frac {\alpha _{i}+1}{p_{i}} \biggr) \biggr).$$

### Proof

Set $$K(x_{1},\ldots,x_{n})=1/ ( x_{1}^{\lambda _{1}}+x_{2}^{\lambda_{2}}+\cdots+x_{n}^{\lambda_{n}} ) ^{a}$$, then $$K(x_{1},\ldots,x_{n})$$ is a quasi-homogeneous positive funct+ion with parameters $$(-a,\lambda_{1},\ldots,\lambda_{n})$$. By Lemma 2,
\begin{aligned} W_{1} ={}& \int_{\mathbf{R}_{+}^{n-1}}\frac{1}{ ( 1+x_{2}^{\lambda _{2}}+\cdots+x_{n}^{\lambda_{n}} ) ^{a}}\prod_{i=2}^{n}x_{i}^{-\frac{\alpha_{i}+1}{p_{i}}} \,dx_{2}\cdots\,dx_{n} \\ = {}&\lim_{r\rightarrow+\infty} \int_{x_{i}>0,x_{2}^{\lambda_{2}}+\cdots +x_{n}^{\lambda_{n}}\leq r}\frac{1}{ \{ 1+r [ ( \frac {x_{1}}{r^{1/\lambda_{1}}} ) ^{\lambda_{1}}+\cdots+( \frac{x_{n}}{r^{1/\lambda_{n}}} ) ^{\lambda_{n}} ] \} ^{n}} \\ &{}\times\prod_{i=2}^{n}x_{i}^{ ( 1-\frac{\alpha _{i}+1}{p_{i}} ) -1} \,dx_{2}\cdots\,dx_{n} \\ ={}& \lim_{r\rightarrow+\infty}\frac{r^{\sum_{i=2}^{n}\frac{1}{\lambda _{i}}-\sum_{i=2}^{n}\frac{1}{\lambda_{i}} ( 1-\frac{\alpha _{i}+1}{p_{i}}) }\prod_{i=2}^{n}\Gamma( \frac{1}{\lambda_{i}} ( 1-\frac{\alpha_{i}+1}{p_{i}} ) ) }{\prod_{i=2}^{n}\lambda_{i}\Gamma ( \sum_{i=2}^{n}\frac{1}{\lambda_{i}} ( 1-\frac{\alpha _{i}+1}{p_{i}} ) ) } \\ &{}\times \int_{0}^{1}\frac{1}{ ( 1+rt ) ^{a}}t^{\sum _{i=2}^{n}\frac{1}{\lambda_{i}} ( 1-\frac{\alpha_{i}+1}{p_{i}} ) -1} \, dt \\ ={}& \lim_{r\rightarrow+\infty}\frac{\prod_{i=2}^{n}\Gamma( \frac {1}{\lambda_{i}} ( 1-\frac{\alpha_{i}+1}{p_{i}} ) ) }{\prod_{i=2}^{n}\lambda_{i}\Gamma( \sum_{i=2}^{n}\frac{1}{\lambda _{i}}( 1-\frac{\alpha_{i}+1}{p_{i}} ) ) } \int_{0}^{r}\frac {1}{( 1+u ) ^{a}}u^{\sum_{i=2}^{n}\frac{1}{\lambda_{i}} ( 1-\frac{\alpha_{i}+1}{p_{i}} ) -1} \, du \\ ={}& \frac{\prod_{i=2}^{n}\Gamma( \frac{1}{\lambda_{i}} ( 1-\frac{\alpha_{i}+1}{p_{i}} ) ) }{\prod_{i=2}^{n}\lambda_{i}\Gamma ( \sum_{i=2}^{n}\frac{1}{\lambda_{i}} ( 1-\frac{\alpha _{i}+1}{p_{i}} ) ) } \int_{0}^{+\infty}\frac{1}{ ( 1+u ) ^{a}}u^{\sum_{i=2}^{n}\frac{1}{\lambda_{i}} ( 1-\frac{\alpha _{i}+1}{p_{i}}) -1} \,du \\ ={}& \frac{\prod_{i=2}^{n}\Gamma( \frac{1}{\lambda_{i}} ( 1-\frac{\alpha_{i}+1}{p_{i}} ) ) }{\prod_{i=2}^{n}\lambda_{i}\Gamma ( \sum_{i=2}^{n}\frac{1}{\lambda_{i}} ( 1-\frac{\alpha _{i}+1}{p_{i}} ) ) } \\ &{}\times\frac{\Gamma( \sum_{i=2}^{n}\frac{1}{\lambda_{i}} ( 1-\frac{\alpha_{i}+1}{p_{i}} ) ) \Gamma( a-\sum_{i=2}^{n}\frac{1}{\lambda_{i}} ( 1-\frac{\alpha_{i}+1}{p_{i}} ) ) }{\Gamma( a ) } \\ = {}&\frac{1}{\Gamma( a ) }\prod_{i=2}^{n} \frac{1}{\lambda _{i}}\prod_{i=2}^{n} \Gamma \biggl( \frac{1}{\lambda_{i}} \biggl( 1-\frac{\alpha _{i}+1}{p_{i}} \biggr) \biggr) \Gamma \biggl( \frac{1}{\lambda_{1}} \biggl( 1-\frac{\alpha_{1}+1}{p_{1}} \biggr) \biggr) \\ ={}& \frac{1}{\Gamma( a ) }\prod_{i=2}^{n} \frac{1}{\lambda _{i}}\prod_{i=1}^{n} \Gamma \biggl( \frac{1}{\lambda_{i}} \biggl( 1-\frac{\alpha _{i}+1}{p_{i}} \biggr) \biggr). \end{aligned}
Based on this, we can obtain
$$\frac{W_{1}}{\lambda_{1}}\prod_{i=1}^{n} \lambda_{i}^{\frac{1}{p_{i}}}= \frac{1}{\Gamma( a ) }\prod _{i=1}^{n}\lambda_{i}^{\frac {1}{p_{i}}-1} \prod_{i=1}^{n}\Gamma \biggl( \frac{1}{\lambda_{i}} \biggl( 1-\frac {\alpha _{i}+1}{p_{i}} \biggr) \biggr).$$
According to Theorem 1, we know that Theorem 3 holds. □

## References

1. 1.
He, B., Cao, J.F., Yang, B.C.: A brand new multiple Hilbert-type integral inequality. Acta Math. Sin., Chin. Ser. 58(4), 661–672 (2015)
2. 2.
Hong, Y.: A Hilbert-type integral inequality with quasi-homogeneous kernel and several functions. Acta Mathematics Sinica, Chinese Series 57(5), 833–840 (2014)
3. 3.
Perić, I., Vukvić, P.: Hardy–Hilbert’s inequality with general homogeneous kernel. Math. Inequal. Appl. 12, 525–536 (2009)
4. 4.
Rassias, M., Yang, B.C.: On a Hardy–Hilbert-type inequality with a general homogeneous kernel. Int. J. Nonlinear Anal. Appl. 7(1), 249–269 (2016)
5. 5.
Chen, Q., Shi, Y., Yang, B.C.: A relation between two simple Hardy–Mulholland-type inequalities with parameters. J. Inequal. Appl. 2016, 75 (2016)
6. 6.
Hong, Y., Wen, Y.M.: A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel and the best constant factor. Chin. Ann. Math. 37A(3), 329–336 (2016)
7. 7.
Yang, B.C., Chen, Q.: On a more accurate Hardy–Mulholland-type inequality. J. Inequal. Appl. 2016, 82 (2016)
8. 8.
Gao, M., Yang, B.C.: On the extended Hilbert’s inequality. Proc. Am. Math. Soc. 126(3), 751–759 (1998)
9. 9.
Yang, B.C.: On a more accurate multidimensional Hilbert-type inequality with parameters. Math. Inequal. Appl. 18, 429–441 (2015)
10. 10.
Xin, D.M., Yang, B.C., Chen, Q.: A discrete Hilbert-type inequality in the whole plane. J. Inequal. Appl. 2016, 133 (2016)
11. 11.
Kuang, J.C.: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2010) (in Chinese) Google Scholar
12. 12.
Yang, B.C., Chen, Q.: On a Hardy–Hilbert-type inequality with parameters. J. Inequal. Appl. 2015, 339 (2015)
13. 13.
Yang, B.C., Chen, Q.: A new extension of Hardy–Hilbert’s inequality in the whole plane. J. Funct. Spaces 2016, Article ID 9197476 (2016)
14. 14.
Hong, Y.: On multiple Hardy–Hilbert integral inequalities with some parameters. J. Inequal. Appl. 2006, Article ID 94960 (2006)
15. 15.
Huang, Q.L., Yang, B.C.: On a multiple Hilbert-type integral operator and applications. J. Inequal. Appl. 2009, Article ID 192197 (2009)
16. 16.
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Gambridge (1952)
17. 17.
Yang, B.C., Debnath, L.: Half-Discrete Hilbert-Type Inequalities. World Scientific, Singapore (2014)
18. 18.
Kuang, J., Debnath, L.: On new generalizations of Hilbert’s inequality and their applications. J. Math. Anal. Appl. 245(1), 248–265 (2000)
19. 19.
Rassias, M., Yang, B.C.: On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole plane. Acta Appl. Math. 2018, 1–14 (2018) Google Scholar
20. 20.
Rassias, M., Yang, B.C.: Equivalent properties of a Hilbert-type integral inequality with the best constant factor related to the Hurwitz zeta function. Ann. Funct. Anal. 9(2), 282–295 (2018)
21. 21.
Rassias, M., Yang, B.C.: A half-discrete Hilbert-type inequality in the whole plane related to the Riemann zeta function. Appl. Anal. 2017(2), 1–21 (2017) Google Scholar
22. 22.
Rassias, M., Yang, B.C.: A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286–1308 (2015)
23. 23.
Rassias, M., Yang, B.C.: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput. 249, 408–418 (2014)
24. 24.
Milovanović, G.V., Rassias, M.: Analytic Number Theory, Approximation Theory and Special Functions. Springer, New York (2014)
25. 25.
Fichtingoloz, G.M.: A Course in Differential and Integral Calculus. Renmin Jiaoyu Publishers, Beijing (1957) (in Chinese) Google Scholar

© The Author(s) 2018

## Authors and Affiliations

• Junfei Cao
• 1
• Bing He
• 1
• Yong Hong
• 2
• Bicheng Yang
• 1
1. 1.Department of MathematicsGuangdong University of EducationGuangzhouP.R. China
2. 2.College of Mathematics and StatisticsGuangdong University of Finance and EconomicsGuangzhouP.R. China