Advertisement

Molecular Neurodegeneration

, 10:23 | Cite as

Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration

  • Anne-Sophie Van Rompuy
  • Marusela Oliveras-Salvá
  • Anke Van der Perren
  • Olga Corti
  • Chris Van den Haute
  • Veerle BaekelandtEmail author
Research article

Abstract

Background

Alpha-synuclein is a key protein in the pathogenesis of Parkinson’s disease. Mutations in the parkin gene are the most common cause of early-onset autosomal recessive Parkinson’s disease, probably through a loss-of-function mechanism. However, the molecular mechanism by which loss of parkin function leads to the development of the disease and the role of alpha-synuclein in parkin-associated Parkinson’s disease is still not elucidated. Conflicting results were reported about the effect of the absence of parkin on alpha-synuclein-mediated neurotoxicity using a transgenic approach. In this study, we investigated the effect of loss of parkin on alpha-synuclein neuropathology and toxicity in adult rodent brain using viral vectors. Therefore, we overexpressed human wild type alpha-synuclein in the substantia nigra of parkin knockout and wild type mice using two different doses of recombinant adeno-associated viral vectors.

Results

No difference was observed in nigral dopaminergic cell loss between the parkin knockout mice and wild type mice up to 16 weeks after viral vector injection. However, the level of alpha-synuclein phosphorylated at serine residue 129 in the substantia nigra was significantly increased in the parkin knockout mice compared to the wild type mice while the total expression level of alpha-synuclein was similar in both groups. The increased alpha-synuclein phosphorylation was confirmed in a parkin knockdown cell line.

Conclusions

These findings support a functional relationship between parkin and alpha-synuclein phosphorylation in rodent brain.

Keywords

Parkinson’s disease Alpha-synuclein Alpha-synuclein phosphorylation Parkin Adeno-associated viral vectors Knockout 

Abbreviations

ANOVA

Analysis of variance

α-SYN

Alpha-synuclein

eGFP

Enhanced green fluorescent protein

GC

Genome copies

IP

Intraperitoneal

LBs

Lewy bodies

PD

Parkinson’s disease

parkin−/−

parkin knockout

parkin+/+

parkin wild type

PBS

Phosphate buffered saline

P-S129 α-SYN

α-SYN phosphorylated at serine residue 129

rAAV

recombinant adeno-associated viral vector

SEM

Standard error of the mean

SN

Substantia nigra

TH

Tyrosine hydroxylase

WT

Wild type

Notes

Acknowledgements

The authors thank Caroline van Heijningen and Sylvie De Swaef for excellent technical assistance and dr. Veerle Janssens for the in-house PP2A monoclonal antibodies. Confocal microscopy was performed at the lab of Molecular Imaging and Photonics at the KU Leuven.

A-SVR is a doctoral fellow supported by the Flemish Research Foundation FWO-Vlaanderen. MOS is a doctoral fellow supported by the European FP7 ITN NEUROMODEL (PITN-GA-2008-215618). This work was supported by the FWO Vlaanderen (G.0768.10), the FP7 RTD project MEFOPA (HEALTH-2009-241791), and the KU Leuven (IOF-KP/07/001, OT/08/052A).

References

  1. 1.
    Lees AJ, Hardy J, Revesz T. Parkinson's disease. Lancet. 2009;373:2055–66.CrossRefGoogle Scholar
  2. 2.
    Schulte C, Gasser T. Genetic basis of Parkinson's disease: inheritance, penetrance, and expression. Appl Clin Genet. 2011;4:67–80.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988;8:2804–15.CrossRefGoogle Scholar
  4. 4.
    Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25:239–52.CrossRefGoogle Scholar
  5. 5.
    Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ. A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci. 2002;22:3090–9.CrossRefGoogle Scholar
  6. 6.
    George JM, Jin H, Woods WS, Clayton DF. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron. 1995;15:361–72.CrossRefGoogle Scholar
  7. 7.
    Lotharius J, Brundin P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci. 2002;3:932–42.CrossRefGoogle Scholar
  8. 8.
    Deleersnijder A, Gerard M, Debyser Z, Baekelandt V. The remarkable conformational plasticity of alpha-synuclein: blessing or curse? Trends Mol Med. 2013;19:368–77.CrossRefGoogle Scholar
  9. 9.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.CrossRefGoogle Scholar
  10. 10.
    Chesselet MF. In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson's disease? Exp Neurol. 2008;209:22–7.CrossRefGoogle Scholar
  11. 11.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.CrossRefGoogle Scholar
  12. 12.
    Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem. 2000;275:35661–4.CrossRefGoogle Scholar
  13. 13.
    Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. 2000;25:302–5.CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A. 2000;97:13354–9.CrossRefGoogle Scholar
  15. 15.
    Exner N, Lutz AK, Haass C, Winklhofer KF. Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012;31:3038–62.CrossRefGoogle Scholar
  16. 16.
    Fallon L, Belanger CM, Corera AT, Kontogiannea M, Regan-Klapisz E, Moreau F, et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol. 2006;8:834–42.CrossRefGoogle Scholar
  17. 17.
    Henn IH, Bouman L, Schlehe JS, Schlierf A, Schramm JE, Wegener E, et al. Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J Neurosci. 2007;27:1868–78.CrossRefGoogle Scholar
  18. 18.
    Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, et al. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med. 2001;7:1144–50.CrossRefGoogle Scholar
  19. 19.
    Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem. 2003;278:43628–35.CrossRefGoogle Scholar
  20. 20.
    Ko HS, von Coelln R, Sriram SR, Kim SW, Chung KK, Pletnikova O, et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J Neurosci. 2005;25:7968–78.CrossRefGoogle Scholar
  21. 21.
    Oliveras-Salva M, Van Rompuy AS, Heeman B, Van den Haute C, Baekelandt V. Loss-of-function rodent models for parkin and PINK1. J Parkinsons Dis. 2011;1:229–51.PubMedGoogle Scholar
  22. 22.
    Doherty KM, Silveira-Moriyama L, Parkkinen L, Healy DG, Farrell M, Mencacci NE, et al. Parkin disease: a clinicopathologic entity? JAMA Neurol. 2013;70:571–9.CrossRefGoogle Scholar
  23. 23.
    Haywood AF, Staveley BE. Mutant alpha-synuclein-induced degeneration is reduced by parkin in a fly model of Parkinson's disease. Genome. 2006;49:505–10.CrossRefGoogle Scholar
  24. 24.
    Khandelwal PJ, Dumanis SB, Feng LR, Maguire-Zeiss K, Rebeck G, Lashuel HA, et al. Parkinson-related parkin reduces alpha-Synuclein phosphorylation in a gene transfer model. Mol Neurodegener. 2010;5:47.CrossRefGoogle Scholar
  25. 25.
    Lo Bianco C, Schneider BL, Bauer M, Sajadi A, Brice A, Iwatsubo T, et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson's disease. Proc Natl Acad Sci U S A. 2004;101:17510–5.CrossRefGoogle Scholar
  26. 26.
    Petrucelli L, O'Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, et al. Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron. 2002;36:1007–19.CrossRefGoogle Scholar
  27. 27.
    Yamada M, Mizuno Y, Mochizuki H. Parkin gene therapy for alpha-synucleinopathy: a rat model of Parkinson's disease. Hum Gene Ther. 2005;16:262–70.CrossRefGoogle Scholar
  28. 28.
    Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron. 2003;37:911–24.CrossRefGoogle Scholar
  29. 29.
    Yasuda T, Miyachi S, Kitagawa R, Wada K, Nihira T, Ren YR, et al. Neuronal specificity of alpha-synuclein toxicity and effect of Parkin co-expression in primates. Neuroscience. 2007;144:743–53.CrossRefGoogle Scholar
  30. 30.
    Fournier M, Vitte J, Garrigue J, Langui D, Dullin JP, Saurini F, et al. Parkin deficiency delays motor decline and disease manifestation in a mouse model of synucleinopathy. PLoS One. 2009;4, e6629.CrossRefGoogle Scholar
  31. 31.
    von Coelln R, Thomas B, Andrabi SA, Lim KL, Savitt JM, Saffary R, et al. Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy. J Neurosci. 2006;26:3685–96.CrossRefGoogle Scholar
  32. 32.
    Stichel CC, Zhu XR, Bader V, Linnartz B, Schmidt S, Lubbert H. Mono- and double-mutant mouse models of Parkinson's disease display severe mitochondrial damage. Hum Mol Genet. 2007;16:2377–93.CrossRefGoogle Scholar
  33. 33.
    Oliveras-Salva M, Van der Perren A, Casadei N, Stroobants S, Nuber S, D'Hooge R, et al. rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration. Mol Neurodegener. 2013;8:44.CrossRefGoogle Scholar
  34. 34.
    Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem. 2006;281:29739–52.CrossRefGoogle Scholar
  35. 35.
    Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. Alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.CrossRefGoogle Scholar
  36. 36.
    Inglis KJ, Chereau D, Brigham EF, Chiou SS, Schobel S, Frigon NL, et al. Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. J Biol Chem. 2009;284:2598–602.CrossRefGoogle Scholar
  37. 37.
    Lee KW, Chen W, Junn E, Im JY, Grosso H, Sonsalla PK, et al. Enhanced phosphatase activity attenuates alpha-synucleinopathy in a mouse model. J Neurosci. 2011;31:6963–71.CrossRefGoogle Scholar
  38. 38.
    Van der Perren A, Toelen J, Carlon M, Van den Haute C, Coun F, Heeman B, et al. Efficient and stable transduction of dopaminergic neurons in rat substantia nigra by rAAV 2/1, 2/2, 2/5, 2/6.2, 2/7, 2/8 and 2/9. Gene Ther. 2011;18:517–27.CrossRefGoogle Scholar
  39. 39.
    Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS, et al. Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53 – > Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci U S A. 2002;99:8968–73.CrossRefGoogle Scholar
  40. 40.
    Neumann M, Kahle PJ, Giasson BI, Ozmen L, Borroni E, Spooren W, et al. Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. J Clin Invest. 2002;110:1429–39.CrossRefGoogle Scholar
  41. 41.
    Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, et al. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet. 2003;12:2277–91.CrossRefGoogle Scholar
  42. 42.
    Martella G, Platania P, Vita D, Sciamanna G, Cuomo D, Tassone A, et al. Enhanced sensitivity to group II mGlu receptor activation at corticostriatal synapses in mice lacking the familial parkinsonism-linked genes PINK1 or Parkin. Exp Neurol. 2009;215:388–96.CrossRefGoogle Scholar
  43. 43.
    Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell. 2011;144:689–702.CrossRefGoogle Scholar
  44. 44.
    Li J, Uversky VN, Fink AL. Conformational behavior of human alpha-synuclein is modulated by familial Parkinson's disease point mutations A30P and A53T. Neurotoxicology. 2002;23:553–67.CrossRefGoogle Scholar
  45. 45.
    Jo E, Fuller N, Rand RP, St George-Hyslop P, Fraser PE. Defective membrane interactions of familial Parkinson's disease mutant A30P alpha-synuclein. J Mol Biol. 2002;315:799–807.CrossRefGoogle Scholar
  46. 46.
    Um JW, Im E, Lee HJ, Min B, Yoo L, Yoo J, et al. Parkin directly modulates 26S proteasome activity. J Neurosci. 2010;30:11805–14.CrossRefGoogle Scholar
  47. 47.
    Ishii A, Nonaka T, Taniguchi S, Saito T, Arai T, Mann D, et al. Casein kinase 2 is the major enzyme in brain that phosphorylates Ser129 of human alpha-synuclein: Implication for alpha-synucleinopathies. FEBS Lett. 2007;581:4711–7.CrossRefGoogle Scholar
  48. 48.
    Visanji NP, Wislet-Gendebien S, Oschipok LW, Zhang G, Aubert I, Fraser PE, et al. Effect of Ser-129 phosphorylation on interaction of alpha-synuclein with synaptic and cellular membranes. J Biol Chem. 2011;286:35863–73.CrossRefGoogle Scholar
  49. 49.
    Waxman EA, Giasson BI. Specificity and regulation of casein kinase-mediated phosphorylation of alpha-synuclein. J Neuropathol Exp Neurol. 2008;67:402–16.CrossRefGoogle Scholar
  50. 50.
    Machiya Y, Hara S, Arawaka S, Fukushima S, Sato H, Sakamoto M, et al. Phosphorylated alpha-synuclein at Ser-129 is targeted to the proteasome pathway in a ubiquitin-independent manner. J Biol Chem. 2010;285:40732–44.CrossRefGoogle Scholar
  51. 51.
    Chen L, Feany MB. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci. 2005;8:657–63.CrossRefGoogle Scholar
  52. 52.
    Kuwahara T, Tonegawa R, Ito G, Mitani S, Iwatsubo T. Phosphorylation of alpha-synuclein protein at Ser-129 reduces neuronal dysfunction by lowering its membrane binding property in Caenorhabditis elegans. J Biol Chem. 2012;287:7098–109.CrossRefGoogle Scholar
  53. 53.
    AzeredodaSilveira S, Schneider BL, Cifuentes-Diaz C, Sage D, Abbas-Terki T, Iwatsubo T, et al. Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in a rat model of Parkinson's disease. Hum Mol Genet. 2009;18:872–87.Google Scholar
  54. 54.
    Gorbatyuk OS, Li S, Sullivan LF, Chen W, Kondrikova G, Manfredsson FP, et al. The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc Natl Acad Sci U S A. 2008;105:763–8.CrossRefGoogle Scholar
  55. 55.
    McFarland NR, Fan Z, Xu K, Schwarzschild MA, Feany MB, Hyman BT, et al. Alpha-synuclein S129 phosphorylation mutants do not alter nigrostriatal toxicity in a rat model of Parkinson disease. J Neuropathol Exp Neurol. 2009;68:515–24.CrossRefGoogle Scholar
  56. 56.
    Febbraro F, Sahin G, Farran A, Soares S, Jensen PH, Kirik D, et al. Ser129D mutant alpha-synuclein induces earlier motor dysfunction while S129A results in distinctive pathology in a rat model of Parkinson’s disease. Neurobiol Dis. 2013;56:47–58.CrossRefGoogle Scholar
  57. 57.
    Sato H, Arawaka S, Hara S, Fukushima S, Koga K, Koyama S, et al. Authentically phosphorylated alpha-synuclein at Ser129 accelerates neurodegeneration in a rat model of familial Parkinson’s disease. J Neurosci. 2011;31:16884–94.CrossRefGoogle Scholar
  58. 58.
    Van der Perren A, Toelen J, Casteels C, Macchi F, Van Rompuy A-S, Sarre S, et al. Longitudinal follow-up and characterization of a robust rat model for Parkinson’s disease based on overexpression of alpha-synuclein with adeno-associated viral vectors. Neurobiol Aging. 2015;36:1543–58.CrossRefGoogle Scholar
  59. 59.
    Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther. 2005;5:285–97.CrossRefGoogle Scholar
  60. 60.
    Baekelandt V, Claeys A, Eggermont K, Lauwers E, De Strooper B, Nuttin B, et al. Characterization of lentiviral vector-mediated gene transfer in adult mouse brain. Hum Gene Ther. 2002;13:841–53.CrossRefGoogle Scholar
  61. 61.
    Schmitz C, Hof PR. Design-based stereology in neuroscience. Neuroscience. 2005;130:813–31.CrossRefGoogle Scholar
  62. 62.
    Osorio L, Gijsbers R, Oliveras-Salva M, Michiels A, Debyser Z, Van den Haute C, et al. Viral vectors expressing a single microRNA-based short-hairpin RNA result in potent gene silencing in vitro and in vivo. J Biotechnol. 2014;169:71–81.CrossRefGoogle Scholar

Copyright information

© Rompuy et al. 2015

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors and Affiliations

  • Anne-Sophie Van Rompuy
    • 1
  • Marusela Oliveras-Salvá
    • 1
  • Anke Van der Perren
    • 1
  • Olga Corti
    • 2
    • 3
    • 4
  • Chris Van den Haute
    • 1
    • 5
  • Veerle Baekelandt
    • 1
    Email author
  1. 1.Laboratory for Neurobiology and Gene Therapy, Department of NeurosciencesKU LeuvenFlandersBelgium
  2. 2.Inserm, U 975, CRICM, Hôpital de la Pitié-SalpêtrièreParisFrance
  3. 3.UPMC Université Paris 06, UMR_S975ParisFrance
  4. 4.CNRS, UMR 7225ParisFrance
  5. 5.Leuven Viral Vector CoreKU LeuvenLeuvenBelgium

Personalised recommendations