Global scientific trends on aflatoxin research during 1998–2017: a bibliometric and visualized study
Abstract
Background
Aflatoxins are fungal metabolites associated with contaminated food products. Intake of aflatoxin-contaminated food results in serious health hazards and even death. Therefore, the aim of this study is to evaluate the global scientific output of research of aflatoxin by using bibliometric techniques.
Methods
This bibliometric study was conducted using Scopus database and classified the retrieved publications were classified from different aspects, including the countries/region of focus, journals, authors, institutes, citations, and content analysis to discover any hot and emerging topics. In addition, the bibliometric analysis of the international collaborative network and hot research topics were generated by VOSviewer© software version 1.6.10. The publication period was restricted in the search for two decades (1998–2017).
Results
The search engine of the Scopus database found 9845 documents published in the field of aflatoxin. The USA is the top publishing source in the world (22.85%), followed by China (11.85%), India (9.32%), and Italy (5.25%). In earlier years, researchers focused on terms related to the topics of “sources and biosynthesis of aflatoxin”, “health effects by aflatoxin”, and “detoxification and treatment of aflatoxin”. However, in recent years, researchers pay more attention to the topic of detection and quantification of aflatoxin.
Conclusions
The quantity of research in global aflatoxin has substantially increased over the past two decades. The evaluation of the historical status and development trend in aflatoxin scientific research can guide future research, and ultimately provide the basis for improving management procedures for governmental decisions, healthcare, industries, and educational institutions.
Keywords
Aflatoxin Scopus Bibliometric VOSviewerAbbreviations
- IFs
Impact factors
- JCR
Journal Citation Reports
- NIH
National Institutes of Health
- SNIP
Source Normalized Impact per Paper
- WoS
Web of Science
Background
Aflatoxins are toxic secondary metabolites, affected by fungal species, of Aspergillus molds that are largely distributed in nature and have contaminated the food supplies of animals and humans, resulting in serious health hazards and even death [1, 2]. Additional health impacts of aflatoxins include hepatotoxicity, teratogenicity, genotoxicity, and cytotoxicity [3]. It has been estimated about 5 billion people globally are particularly affected by exposed to dietary aflatoxins [4]. Tropical and subtropical areas of the world are the highest areas for aflatoxin contamination of the food products, where food storage conditions for cereals (e.g. maize and peanuts), spices, and milk are suboptimal [4, 5, 6].
Bibliometrics and evaluation of research performance have been carried out on a wide range of health topics [7, 8, 9, 10, 11, 12, 13, 14, 15], and several have been carried out in the fields of environmental studies [16, 17], and toxicology [18, 19, 20, 21, 22, 23, 24]. Yet, to the best of my knowledge, only a few bibliometric studies in food contamination have been done recently [25, 26, 27, 28], and only one bibliometric study explicitly focused on aflatoxin has been published by using Web of Science (WoS) database for data collection [28]. Because the aflatoxin bibliometric study [28] found that aflatoxin research is now being given increased scientific attention internationally, it is therefore necessary to thoroughly evaluate and classify the existing literature from different aspects, including the countries/region of origin, journals, authors, institutes, citations, and content analysis to discover any hot and emerging topics using a large and comprehensive database. Therefore, the aim of this study is to evaluate the global scientific output of research of aflatoxin by using bibliometric techniques, and flag areas of concern.
Identifying the most productive and influential research, can be useful to anyone involved on the field of aflatoxin. Drawing on these insights may aid understanding of historical progress in aflatoxin research over the last 20 years and offer guidance researchers, and policy makers, regarding best scientific and publishing practices for future health research of this scientific field.
Methods
Data source
In this bibliometric study, we selected documents related to aflatoxin indexed in Scopus database from 1998 to 2017. This database is the large one, when compared with PubMed or Web of Science, and usually respected as a reliable source for academic and bibliometric studies [29, 30]. The use of Scopus as a bibliometric tool was based on the idea that it has a better coverage of journals than other databases such as Web of Science [29, 30]. Additionally, Scopus has been used and validated in previously published bibliometric analyses [8, 9, 18, 31, 32, 33, 34, 35, 36, 37]. Data were collected in March 2019.
Search strategy
The following search string was used to identify publications in the field of aflatoxin based on their titles and/or abstract: TITLE-ABS (aflatox*) AND PUBYEAR >1997 AND PUBYEAR <2018. To get greater accuracy in the findings, the search strategy for the terms related to aflatoxin was limited to Title/Abstract only because if expanded to other search fields such Keywords, many publications identified were not related to aflatoxin (i.e false-positive data). Researchers’ experience [7, 35, 38, 39] is that inclusion of search items in the title/abstract instead of a topic search (title, abstract, and keywords greatly increases specificity with minimum loss of sensitivity. The major reason for the generation of false-positive results by keyword search is that Scopus considers Keywords as author and indexed keywords such as “EMTRE drug terms”, “EMTREE medical terms”, and “Medline keywords”.
Bibliometric analysis
The evaluation of the collected sample involved weighing the following indictors: (1) publication output by years, (2) top 10 countries with their h-index and collaboration pattern, (3) top 10 most influential journals with their Source Normalized Impact per Paper (SNIP), and impact factors (IF), (4) top 10 most influential institutions, and (5) top 20 cited publications.
Visualized analysis
The bibliometric analysis of the international collaborative network and hot research topics were generated by VOSviewer© software version 1.6.10 [40]. This freely available computer program (www.vosviewer.com) that is used for constructing and viewing bibliometric maps to analyze the output of countries, and authors in this sphere, and it highlights commonly used terms in the titles and abstracts for the retrieved publications, revealing those hot research topics.
Results and discussion
Number of publications per year (1998–2017)
Top 10 most productive countries for aflatoxin research
Ranking | Country | Number of publications (%) | h-index | No of collaboration countries | No of documents from collaboration |
---|---|---|---|---|---|
1st | United States | 2250 (22.85) | 118 | 87 | 810 |
2nd | China | 1167 (11.85) | 67 | 43 | 284 |
3rd | India | 918 (9.32) | 54 | 46 | 126 |
4th | Italy | 517 (5.25) | 62 | 54 | 180 |
5th | Iran | 505 (5.13) | 40 | 25 | 73 |
6th | Brazil | 494 (5.02) | 46 | 40 | 145 |
7th | Turkey | 442 (4.49) | 44 | 20 | 44 |
8th | United Kingdom | 372 (3.78) | 66 | 63 | 240 |
9th | Egypt | 364 (3.70) | 39 | 36 | 143 |
10th | Japan | 319 (3.24) | 49 | 33 | 120 |
Among the top 10 countries, five (i.e. India, Iran, Brazil, Turkey, and Egypt) were developing countries as defined by the United Nations, which suggests that each perceive this issue as a serious problem. Among this grouping, there was international diversity not associated with the traditional researching nations’ scientific productivity ranking [18, 34, 35, 36, 54, 55, 56]. The current data verified that Turkey, Egypt and Iran have been the main research contributors from the Middle Eastern countries. Consecutive outbreaks of acute aflatoxicosis in developing countries [4, 6, 57] (specifically, Turkey [58, 59], Iran [60], India [61, 62, 63, 64], Brazil [51, 65], and Egypt [66]) caused exceptionally large morbidity and mortality connected with such outbreaks [1, 67, 68, 69], and this may explain why more research has emphasized on aflatoxin since that time [28].
Network visualization map for country collaboration. The minimum number of documents of an author was 10. 80 countries meet this threshold as illustrated in 11 clusters. Countries represented with larger circle size or font size had relatively more publications
Network visualization map for author collaboration. The minimum number of documents of an author was 20. Of 23,224 authors, 149 meet this threshold as illustrated in 13 clusters. Authors represented with larger circle size or font size had relatively more publications
Most influential journals publishing aflatoxin research
Rankinga | Journal | Number of publications (%) | IFb | SNIPc |
---|---|---|---|---|
1st | Food Control | 384 (3.90) | 4.248 | 1.731 |
2nd | Food and Chemical Toxicology | 158 (1.60) | 3.775 | 1.277 |
2nd | Toxins | 158 (1.60) | 3.895 | 1.245 |
4th | Mycotoxin Research | 151 (1.53) | 3.741 | 1.187 |
5th | Food Additives and Contaminants: Part A | 146 (1.48) | 2.170 | 0.909 |
5th | International Journal of Food Microbiology | 146 (1.48) | 4.006 | 1.556 |
7th | Journal of Agricultural and Food Chemistry | 143 (1.45) | 3.571 | 1.321 |
8th | World Mycotoxin Journal | 140 (1.42) | 2.406 | 0.840 |
9th | Journal of Food Protection | 115 (1.17) | 1.559 | 0.744 |
10th | Food Additives and Contaminantsd | 103 (1.05) | NA | 1.355 |
Top-cited papers in the Journal from 1998 through 2017 according to the number of citations in Scopus
Rank | Authors | Title | Year | Source title | Cited by | Document type |
---|---|---|---|---|---|---|
1st | Hussein and Brasel [71] | “Toxicity, metabolism, and impact of mycotoxins on humans and animals” | 2001 | Toxicology | 868 | Review |
2nd | Williams et al. [5] | “Human aflatoxicosis in developing countries: A review” of toxicology, exposure, potential health consequences, and interventions” | 2004 | American Journal of Clinical Nutrition | 822 | Review |
3rd | Bosch et al. [72] | “Epidemiology of primary liver cancer” | 1999 | Seminars in Liver Disease | 796 | Article |
4th | Machida et al. [73] | “Genome sequencing and analysis of Aspergillus oryzae” | 2005 | Nature | 747 | Article |
5th | Creppy [74] | “Update of survey, regulation and toxic effects of mycotoxins in Europe” | 2002 | Toxicology Letters | 692 | Conference Paper |
6th | Bosch et al. [75] | “Epidemiology of hepatocellular carcinoma” | 2005 | Clinics in Liver Disease | 653 | Conference Paper |
7th | Placinta et al. [76] | “A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins” | 1999 | Animal Feed Science and Technology | 619 | Article |
8th | Lunn et al. [77] | “XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency” | 1999 | Cancer Research | 513 | Article |
9th | Okuda [78] | “Hepatocellular carcinoma” | 2000 | Journal of Hepatology | 510 | Article |
10th | Whittaker et al. [79] | “The role of signaling pathways in the development and treatment of hepatocellular carcinoma” | 2010 | Oncogene | 506 | Article |
11th | El-Serag [80] | “Hepatocellular carcinoma: An epidemiologic view” | 2002 | Journal of Clinical Gastroenterology | 501 | Conference Paper |
12th | Richard [81] | “Some major mycotoxins and their mycotoxicoses-An overview” | 2007 | International Journal of Food Microbiology | 475 | Article |
13th | Yu et al. [82] | “Clustered Pathway Genes in Aflatoxin Biosynthesis” | 2004 | Applied and Environmental Microbiology | 453 | Short Survey |
14th | Turner et al. [83] | “Analytical methods for determination of mycotoxins: A review” | 2009 | Analytica Chimica Acta | 447 | Review |
15th | D’Mello et al. [84] | “Fusarium mycotoxins: A review of global implications for animal health, welfare and productivity” | 1999 | Animal Feed Science and Technology | 433 | Article |
16th | McMahon [85] | “The natural history of chronic hepatitis B virus infection” | 2009 | Hepatology | 423 | Article |
17th | Peraica et al. [86] | “Toxic effects of mycotoxins in humans” | 1999 | Bulletin of the World Health Organization | 414 | Article |
18th | Gomaa et al. [87] | “Hepatocellular carcinoma: Epidemiology, risk factors and pathogenesis” | 2008 | World Journal of Gastroenterology | 410 | Article |
19th | Key et al. [88] | “Diet, nutrition and the prevention of cancer” | 2004 | Public Health Nutrition | 402 | Review |
20th | Geiser et al. [89] | “Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus” | 1998 | Proceedings of the National Academy of Sciences of the United States of America | 396 | Article |
Cluster 1 (in red color): this cluster mainly includes the terms related to the topic of detection and quantification of aflatoxin, such as “sample”, “detection”, “solution”; “validation”, “antibody”, “quantification”, “immune sensor”, and “column”.
Cluster 2 (in blue color): this cluster mainly includes the terms related to the topic of sources and biosynthesis of aflatoxin, such as “Aspergillus flavus”, “A. flavus”, “spore”, harvest”, “fungus”, “mycotoxin contamination”, and “biosynthesis”.
Cluster 3 (in yellow color): this cluster mainly includes the terms related to the topic of health effects by aflatoxin, such as “hepatocellular carcinoma”, “disease”, “effect”, “gene”, and “biomarker”.
Cluster 4 (in green color): this cluster mainly includes the terms related to the topic of detoxification and care regarding aflatoxin, such as “treatment”, “administration”, “diet”, glutathione” and “induction”.
VOSviewer co-occurrence term map of title and abstract words in aflatoxin publications during 1998–2017. a The network visualisation term map for aflatoxin research undertaken globally over the 20-year period. b Distribution of terms according to the mean frequency of appearance; terms in blue appeared earlier than those in yellow colored terms appeared later
The color of terms was coded by VOSviewer, based on the average time they appeared in the 9845 related publications (Fig. 4b). The blue color indicates the keyword appeared early and red indicates the keywords appeared later. Before 2010, namely in the early stage of research, most aflatoxins’ studies focused on terms related to the topics of “sources and biosynthesis of aflatoxin”, “health effects by aflatoxin”, and “detoxification and treatment of aflatoxin”. The latest trends showed that the terms related to the topic of detection and quantification of aflatoxin would be of concern widely in the future.
One clear theme to emerge from the findings is that the most top-cited aflatoxin publications emphasised the diversity of sub-topics similar to the research hotspots from co-occurring terms including “health effects by aflatoxin” [5, 71, 72, 75, 77, 78, 80, 84, 85, 86, 87], “sources and biosynthesis of aflatoxin” [76, 81, 82, 89], “detoxification and treatment of aflatoxin” [74, 79, 88], and “detection and quantification of aflatoxin” [73, 83].
The performance of the top 10 most productive institutions in aflatoxin research
Rankinga | Institute, country | Number of publications (%) |
---|---|---|
1st | USDA Agricultural Research Service, Washington DC, USA | 508 (5.16) |
2nd | United States Department of Agriculture, USA | 404 (4.10) |
3rd | USDA ARS Southern Regional Research Center, USA | 278 (2.82) |
4th | North Carolina State University, USA | 144 (1.46) |
5th | Universidad Nacional de Rio Cuarto, Argentina | 134 (1.36) |
6th | Universidade de Sao Paulo – USP, Brazil | 126 (1.28) |
6th | Texas A and M University, USA | 126 (1.28) |
8th | Chinese Academy of Agricultural Sciences, China | 114 (1.16) |
9th | National Research Centre, Egypt | 110 (1.12) |
10th | Johns Hopkins Bloomberg School of Public Health, USA | 107 (1.09) |
Limitations
This study utilizes a bibliometric approach to analyze the current status and trend of development of aflatoxin research. But there were a few limitations within which are similar to previous studies. First, the current study was limited by the use of the search term “aflatoxin” in title and/or abstract search only. Particularly, any publications that used “aflatoxin” as a keyword or inside of the publication may have been missed in this analysis. However, if such false-negative results did exist, they will have little effect on the overall findings [7, 35, 38, 39]. Second, it surveyed just the publications in the Scopus database. Although Scopus is the most frequently used and trusted search engine, a few outlier publications might not have been included. Despite that, the current bibliometric study characterises the first concise analysis of the global publications related to aflatoxin by using Scopus and VOSviewer© and illustrates the benefits of bibliometric analysis for assessing research productivity in the field of aflatoxin in a standardised way. Third, the standardization of author names, and terms were completed based on findings on the VOSviewer© and may not be accurate because in certain cases, some authors might have different name spelling or more than one name. This might generate inaccurate research output for these authors. Despite these limitations, this study provides a relatively solid global view on aflatoxin research from these recent two decades.
Conclusions
The main purpose of this study was to present an overview on the past, present and future scientific research directions of the research field of aflatoxin by combining a bibliometric analysis with a literature review. The quantity of global research output on aflatoxin has substantially increased over the past 20 years, accounting for more than 9800 publications on relevant journals. In earlier years, researchers focused on terms related to the topics of “sources and biosynthesis of aflatoxin”, “health effects by aflatoxin”, and “detoxification and treatment of aflatoxin”. In recent years, researchers paying more attention to the topic of detection and quantification of aflatoxin would be concerned widely with the future. The USA was the largest contributor to aflatoxin scientific research and had the leading position in global research in this field, followed by China. Quite different from other research domains, some developing economies such as India, Iran, Brazil, Turkey, and Egypt were also among the largest contributors. This bibliometric analysis should be of interest to all governmental decisions, healthcare, industries, and educational institutions, involved in the ongoing advances in aflatoxin biosynthesis, better allocation of monitoring efforts, and improved management procedures.
Notes
Acknowledgements
The author thanks retired British Library curator Andy Simons for English editing of the manuscript. Also, the author would like to thank An-Najah National University for all administrative support throughout the implementation of this project.
Authors’ contributions
SZ conceptualised the study and formulated the study design, collected the data, analysed the data, interpreted the results, and drafted the manuscript. The author read and approved the final manuscript.
Funding
No funding was received for writing this study.
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The author declares that he has no competing interests.
Supplementary material
References
- 1.Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG. Aflatoxins: a global concern for food safety, Human Health and Their Management. Front Microbiol. 2016;7:2170.PubMedPubMedCentralGoogle Scholar
- 2.Wild CP, Gong YY. Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis. 2010;31(1):71–82.PubMedCrossRefPubMedCentralGoogle Scholar
- 3.Ismail A, Goncalves BL, de Neeff DV, Ponzilacqua B, Coppa C, Hintzsche H, Sajid M, Cruz AG, Corassin CH, Oliveira CAF. Aflatoxin in foodstuffs: occurrence and recent advances in decontamination. Food Res Int. 2018;113:74–85.PubMedCrossRefPubMedCentralGoogle Scholar
- 4.Strosnider H, Azziz-Baumgartner E, Banziger M, Bhat RV, Breiman R, Brune MN, DeCock K, Dilley A, Groopman J, Hell K, et al. Workgroup report: public health strategies for reducing aflatoxin exposure in developing countries. Environ Health Perspect. 2006;114(12):1898–903.PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr. 2004;80(5):1106–22.PubMedCrossRefPubMedCentralGoogle Scholar
- 6.Wild CP. Aflatoxin exposure in developing countries: the critical interface of agriculture and health. Food Nutr Bull. 2007;28(2 Suppl):S372–80.PubMedCrossRefPubMedCentralGoogle Scholar
- 7.Ekundayo TC, Okoh AI. A global bibliometric analysis of Plesiomonas-related research (1990 - 2017). PLoS One. 2018;13(11):e0207655.PubMedPubMedCentralCrossRefGoogle Scholar
- 8.Al-Jabi SW. Global research trends in West Nile virus from 1943 to 2016: a bibliometric analysis. Glob Health. 2017;13(1):55.CrossRefGoogle Scholar
- 9.Al-Jabi SW. Global trends in aspirin resistance-related research from 1990 to 2015: a Bibliometric analysis. Basic Clin Pharmacol Toxicol. 2017;121(6):512–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 10.Li L, Ma X, Pandey S, Fan A, Deng X, Cui D. Bibliometric analysis of journals in the field of endoscopic Endonasal surgery for pituitary adenomas. J Craniofac Surg. 2018;29(1):e83–7.PubMedPubMedCentralGoogle Scholar
- 11.Lopez-Munoz F, Tracy DK, Povedano-Montero FJ, Breedvelt J, Garcia-Pacios J, Fernandez-Martin MP, Rubio G, Alamo C. Trends in the scientific literature on atypical antipsychotic drugs in the United Kingdom: a bibliometric study. Ther Adv Psychopharmacol. 2019;9:2045125318820207.PubMedPubMedCentralCrossRefGoogle Scholar
- 12.Zhang J, Chen X, Gao X, Yang H, Zhen Z, Li Q, Lin Y, Zhao X. Worldwide research productivity in the field of psychiatry. Int J Ment Heal Syst. 2017;11(1):20.CrossRefGoogle Scholar
- 13.Nafade V, Nash M, Huddart S, Pande T, Gebreselassie N, Lienhardt C, Pai M. A bibliometric analysis of tuberculosis research, 2007-2016. PLoS One. 2018;13(6):e0199706.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Hernandez-Vasquez A, Alarcon-Ruiz CA, Bendezu-Quispe G, Comande D, Rosselli D. A bibliometric analysis of the global research on biosimilars. J Pharm Policy Pract. 2018;11:6.PubMedPubMedCentralCrossRefGoogle Scholar
- 15.Ho Y-S, Siu E, Chuang K-Y. A bibliometric analysis of dengue-related publications in the science citation index expanded. Futur Virol. 2016;11(9):631–48.CrossRefGoogle Scholar
- 16.Srivastav AL, Kaur T, Rani L, Kumar A. Scientific research production of India and China in environmental chemistry: a bibliometric assessment. Int J Environ Sci Technol. 2019;16(8):4989–96.CrossRefGoogle Scholar
- 17.Yang B, Huang K, Sun D, Zhang Y. Mapping the scientific research on non-point source pollution: a bibliometric analysis. Environ Sci Pollut Res Int. 2017;24(5):4352–66.PubMedCrossRefPubMedCentralGoogle Scholar
- 18.Zyoud SH. Investigating global trends in paraquat intoxication research from 1962 to 2015 using bibliometric analysis. Am J Ind Med. 2018;61(6):462–70.PubMedCrossRefPubMedCentralGoogle Scholar
- 19.Zyoud SH, Al-Jabi SW, Sweileh WM. Worldwide research productivity of paracetamol (acetaminophen) poisoning: a bibliometric analysis (2003-2012). Hum Exp Toxicol. 2015;34(1):12–23.PubMedCrossRefPubMedCentralGoogle Scholar
- 20.Zyoud SH, Al-Jabi SW, Sweileh WM, Awang R, Waring WS. Global research productivity of N-acetylcysteine use in paracetamol overdose: a bibliometric analysis (1976-2012). Hum Exp Toxicol. 2015;34(10):1006–16.PubMedCrossRefPubMedCentralGoogle Scholar
- 21.Zyoud SH, Al-Jabi SW, Sweileh WM, Awang R, Waring WS. Bibliometric profile of the global scientific research on methanol poisoning (1902-2012). J Occup Med Toxicol. 2015;10:17.PubMedPubMedCentralCrossRefGoogle Scholar
- 22.Zyoud SH, Al-Jabi SW, Sweileh WM, Waring WS. Scientific research related to calcium channel blockers poisoning: Bibliometric analysis in Scopus, 1968-2012. Hum Exp Toxicol. 2015;34(11):1162–70.PubMedCrossRefPubMedCentralGoogle Scholar
- 23.Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM. Global research production in glyphosate intoxication from 1978 to 2015: a bibliometric analysis. Hum Exp Toxicol. 2017;36(10):997–1006.PubMedCrossRefPubMedCentralGoogle Scholar
- 24.Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM, Rahhal B, Awang R. Intravenous lipid emulsion as an antidote for the treatment of acute poisoning: a Bibliometric analysis of human and animal studies. Basic Clin Pharmacol Toxicol. 2016;119(5):512–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 25.Guo K, Liu YF, Zeng C, Chen YY, Wei XJ. Global research on soil contamination from 1999 To 2012: a bibliometric analysis. Acta Agriculturae Scandinavica, Section B — Soil Plant Sc. 2014;64(5):377–91.Google Scholar
- 26.Blázquez-Ruiz J, Guerrero-Bote VP, Moya-Anegón F. New Scientometric-based knowledge map of food science research (2003 to 2014). Compr Rev Food Sci Food Saf. 2016;15(6):1040–55.CrossRefGoogle Scholar
- 27.Kolle SR, Shankarappa TH. Publication trends in food-borne disease research (1991–2015): a web of science Core collection based analysis. J Agric Food Inform. 2016;18(1):53–63.CrossRefGoogle Scholar
- 28.Klingelhöfer D, Zhu Y, Braun M, Bendels MHK, Brüggmann D, Groneberg DA. Aflatoxin – publication analysis of a global health threat. Food Control. 2018;89:280–90.CrossRefGoogle Scholar
- 29.Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. FASEB J. 2008;22(2):338–42.PubMedCrossRefPubMedCentralGoogle Scholar
- 30.Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in web of science, Scopus, and Google scholar for articles published in general medical journals. Jama. 2009;302(10):1092–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 31.Sweileh WM, Huijer HA, Al-Jabi SW, Zyoud SH, Sawalha AF. Nursing and midwifery research activity in Arab countries from 1950 to 2017. BMC Health Serv Res. 2019;19(1):340.PubMedPubMedCentralCrossRefGoogle Scholar
- 32.Sweileh WM, Wickramage K, Pottie K, Hui C, Roberts B, Sawalha AF, Zyoud SH. Bibliometric analysis of global migration health research in peer-reviewed literature (2000-2016). BMC Public Health. 2018;18(1):777.PubMedPubMedCentralCrossRefGoogle Scholar
- 33.Zyoud SH. Estimates of global research productivity in using nicotine replacement therapy for tobacco cessation: a bibliometric study. Glob Health. 2018;14(1):14.CrossRefGoogle Scholar
- 34.Zyoud SH, Sweileh WM, Awang R, Al-Jabi SW. Global trends in research related to social media in psychology: mapping and bibliometric analysis. Int J Ment Heal Syst. 2018;12:4.CrossRefGoogle Scholar
- 35.Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM. Global cocaine intoxication research trends during 1975-2015: a bibliometric analysis of web of science publications. Subst Abuse Treat Prev Policy. 2017;12(1):6.PubMedPubMedCentralCrossRefGoogle Scholar
- 36.Zyoud SH, Waring WS, Al-Jabi SW, Sweileh WM. Bibliometric profile of global scientific research on digoxin toxicity (1849-2015). Drug Chem Toxicol. 2018;18:1–7.CrossRefGoogle Scholar
- 37.Al-Jabi SW. Arab world's growing contribution to global leishmaniasis research (1998-2017): a bibliometric study. BMC Public Health. 2019;19(1):625.PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Olisah C, Okoh OO, Okoh AI. A bibliometric analysis of investigations of polybrominated diphenyl ethers (PBDEs) in biological and environmental matrices from 1992–2018. Heliyon. 2018;4(11):e00964.PubMedPubMedCentralCrossRefGoogle Scholar
- 39.Sweileh WM, AbuTaha AS, Sawalha AF, Al-Khalil S, Al-Jabi SW, Zyoud SH. Bibliometric analysis of worldwide publications on multi-, extensively, and totally drug - resistant tuberculosis (2006-2015). Multidiscip Respir Med. 2016;11:45.PubMedCrossRefPubMedCentralGoogle Scholar
- 40.van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523–38.PubMedCrossRefPubMedCentralGoogle Scholar
- 41.Butler WH. Investigation of aflatoxin poisoning. Food Cos Toxicol. 1963;1(C):335.CrossRefGoogle Scholar
- 42.Codner RC, Sargeant K, Yeo R. Production of aflatoxin by the culture of strains of Aspergillus flavus-oryzae on sterilized peanuts. Biotechnol Bioeng. 1963;5(3):185–92.CrossRefGoogle Scholar
- 43.van Dorp DA, van Der Zijden ASM, Beerthuis RK, Sparreboom S, Ord WO, de Jong K, Keuning R. Dihydro-aflatoxin B, a metabolite of aspergillus flavus. Remarks on the structure of aflatoxin B. Recl Trav Chim Pays-Bas. 1963;82(6):587–92.CrossRefGoogle Scholar
- 44.Mongeon P, Paul-Hus A. The journal coverage of web of science and Scopus: a comparative analysis. Scientometrics. 2016;106(1):213–28.CrossRefGoogle Scholar
- 45.Zyoud SH. Global research trends of Middle East respiratory syndrome coronavirus: a bibliometric analysis. BMC Infect Dis. 2016;16:255.PubMedPubMedCentralCrossRefGoogle Scholar
- 46.Briganti M, Delnevo CD, Brown L, Hastings SE, Steinberg MB. Bibliometric Analysis of Electronic Cigarette Publications: 2003(−)2018. Int J Environ Res Public Health. 2019;16(3):1.CrossRefGoogle Scholar
- 47.National Cancer Institute. Aflatoxins. 2018 [Cited 2019 March 23]; Available from: https://www.cancer.gov/about-cancer/causes-prevention/risk/substances/aflatoxins Google Scholar
- 48.Koirala P, Kumar S, Yadav BK, Premarajan KC. Occurrence of aflatoxin in some of the food and feed in Nepal. Indian J Med Sci. 2005;59(8):331–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 49.Lewis L, Onsongo M, Njapau H, Schurz-Rogers H, Luber G, Kieszak S, Nyamongo J, Backer L, Dahiye AM, Misore A, et al. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and Central Kenya. Environ Health Perspect. 2005;113(12):1763–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 50.Mohd-Redzwan S, Jamaluddin R, Abd-Mutalib MS, Ahmad Z. A mini review on aflatoxin exposure in Malaysia: past, present and future. Front Microbiol. 2013;4:334.PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Wouters AT, Casagrande RA, Wouters F, Watanabe TT, Boabaid FM, Cruz CE, Driemeier D. An outbreak of aflatoxin poisoning in dogs associated with aflatoxin B1-contaminated maize products. J Vet Diagn Investig. 2013;25(2):282–7.CrossRefGoogle Scholar
- 52.Oil Crops Research Institute of Chinese Academy of Agricultural Sciences. NSFC-CGIAR Cooperative Project on Groundnut Aflatoxin Resistance Supported. 2014 [Cited 2019 March 23]; Available from: http://ocri.caas.cn/en/news/intlcooperation/90801.htm Google Scholar
- 53.Hou J, Wang G, Wang F, Cheng J, Ren H, Zhuang H, Sun J, Li L, Li J, Meng Q, et al. Guideline of prevention and treatment for chronic hepatitis B (2015 update). J Clin Transl Hepatol. 2017;5(4):297–318.PubMedPubMedCentralCrossRefGoogle Scholar
- 54.Sweileh WM, Al-Jabi SW, Zyoud SH, Sawalha AF, Abu-Taha AS. Global research output in antimicrobial resistance among uropathogens: a bibliometric analysis (2002-2016). J Glob Antimicrob Resist. 2018;13:104–14.PubMedCrossRefPubMedCentralGoogle Scholar
- 55.Zyoud SH. Global toxocariasis research trends from 1932 to 2015: a bibliometric analysis. Health Res Policy Syst. 2017;15(1):14.PubMedPubMedCentralCrossRefGoogle Scholar
- 56.Zyoud SH, Waring WS, Sweileh WM, Al-Jabi SW. Global research trends in Lithium toxicity from 1913 to 2015: a Bibliometric analysis. Basic Clin Pharmacol Toxicol. 2017;121(1):67–73.PubMedCrossRefPubMedCentralGoogle Scholar
- 57.Hamid AS, Tesfamariam IG, Zhang Y, Zhang ZG. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: geographical distribution, mechanism of action and prevention. Oncol Lett. 2013;5(4):1087–92.PubMedPubMedCentralCrossRefGoogle Scholar
- 58.Giray B, Girgin G, Engin AB, Aydın S, Sahin G. Aflatoxin levels in wheat samples consumed in some regions of Turkey. Food Control. 2007;18(1):23–9.CrossRefGoogle Scholar
- 59.Baydar T, Engin AB, Girgin G, Aydin S, Sahin G. Aflatoxin and ochratoxin in various types of commonly consumed retail ground samples in Ankara, Turkey. Ann Agric Environ Med. 2005;12(2):193–7.PubMedPubMedCentralGoogle Scholar
- 60.Kaleibar MT, Helan JA. A field outbreak of aflatoxicosis with high fatality rate in feedlot calves in Iran. Comp Clin Pathol. 2013;22(6):1155–63.CrossRefGoogle Scholar
- 61.Chahota R, Katoch RC, Singh SP, Verma S, Mahajan A. Concurrent outbreak of chlamydiosis and aflatoxicosis among chickens in Himachal Pradesh, India. Veterinarski Arhiv. 2000;70(4):207–13.Google Scholar
- 62.Chahota R, Katoch RC, Singh SP, Verma S, Mahajan A, Nagal KB. Investigation of a severe aflatoxicosis outbreak among chicken in Himachal Pradesh. Indian J Anim Sci. 2000;70(1):22–4.Google Scholar
- 63.Sharma L, Srivastava B, Rana S, Sagar A, Dubey NK. Aflatoxins as serious threats to economy and health. In: Aflatoxins: Food Sources, Occurrence and Toxicological Effects; 2014. p. 259–86.Google Scholar
- 64.Reddy BN, Raghavender CR. Outbreaks of aflatoxicoses in India. Afr J Food Agric Nutr Dev. 2007;7(5):1–15.Google Scholar
- 65.Pierezan F, Oliveira Filho JC, Carmo PM, Lucena RB, Rissi DR, Togni M, Barros CSL. Outbreak of aflatoxicosis in calves in southern Brazil. Pesqui Vet Bras. 2010;30(5):418–22.CrossRefGoogle Scholar
- 66.Selim MI, Popendorf W, Ibrahim MS, el Sharkawy S, el Kashory ES. Aflatoxin B1 in common Egyptian foods. J AOAC Int. 1996;79(5):1124–9.PubMedPubMedCentralGoogle Scholar
- 67.Magnussen A, Parsi MA. Aflatoxins, hepatocellular carcinoma and public health. World J Gastroenterol. 2013;19(10):1508–12.PubMedPubMedCentralCrossRefGoogle Scholar
- 68.Marin S, Ramos AJ, Cano-Sancho G, Sanchis V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol. 2013;60:218–37.PubMedCrossRefPubMedCentralGoogle Scholar
- 69.Umesha S, Manukumar HM, Chandrasekhar B, Shivakumara P, Shiva Kumar J, Raghava S, Avinash P, Shirin M, Bharathi TR, Rajini SB, et al. Aflatoxins and food pathogens: impact of biologically active aflatoxins and their control strategies. J Sci Food Agric. 2017;97(6):1698–707.PubMedCrossRefPubMedCentralGoogle Scholar
- 70.Kamdem JP, Duarte AE, Lima KRR, Rocha JBT, Hassan W, Barros LM, Roeder T, Tsopmo A. Research trends in food chemistry: a bibliometric review of its 40 years anniversary (1976–2016). Food Chem. 2019;294:448–57.PubMedCrossRefPubMedCentralGoogle Scholar
- 71.Hussein HS, Brasel JM. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology. 2001;167(2):101–34.PubMedCrossRefPubMedCentralGoogle Scholar
- 72.Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis. 1999;19(3):271–85.PubMedCrossRefPubMedCentralGoogle Scholar
- 73.Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, et al. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005;438(7071):1157–61.PubMedCrossRefPubMedCentralGoogle Scholar
- 74.Creppy EE. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett. 2002;127(1–3):19–28.PubMedCrossRefPubMedCentralGoogle Scholar
- 75.Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis. 2005;9(2):191–211 v.PubMedCrossRefPubMedCentralGoogle Scholar
- 76.Placinta CM, D'Mello JPF, Macdonald AMC. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol. 1999;78(1):21–37.CrossRefGoogle Scholar
- 77.Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin a variant frequency. Cancer Res. 1999;59(11):2557–61.PubMedPubMedCentralGoogle Scholar
- 78.Okuda K. Hepatocellular carcinoma. J Hepatol. 2000;32(1 Suppl):225–37.PubMedCrossRefPubMedCentralGoogle Scholar
- 79.Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29(36):4989–5005.PubMedCrossRefPubMedCentralGoogle Scholar
- 80.El-Serag HB. Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol. 2002;35(5 Suppl 2):S72–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 81.Richard JL. Some major mycotoxins and their mycotoxicoses--an overview. Int J Food Microbiol. 2007;119(1–2):3–10.PubMedCrossRefPubMedCentralGoogle Scholar
- 82.Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol. 2004;70(3):1253–62.PubMedPubMedCentralCrossRefGoogle Scholar
- 83.Turner NW, Subrahmanyam S, Piletsky SA. Analytical methods for determination of mycotoxins: a review. Anal Chim Acta. 2009;632(2):168–80.PubMedCrossRefPubMedCentralGoogle Scholar
- 84.D’Mello JPF, Placinta CM, Macdonald AMC. Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Anim Feed Sci Technol. 1999;80(3):183–205.CrossRefGoogle Scholar
- 85.McMahon BJ. The natural history of chronic hepatitis B virus infection. Hepatology. 2009;49(5 Suppl):S45–55.PubMedCrossRefPubMedCentralGoogle Scholar
- 86.Peraica M, Radic B, Lucic A, Pavlovic M. Toxic effects of mycotoxins in humans. Bull World Health Organ. 1999;77(9):754–66.PubMedPubMedCentralGoogle Scholar
- 87.Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol. 2008;14(27):4300–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 88.Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC. Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004;7(1a):187–200.PubMedCrossRefPubMedCentralGoogle Scholar
- 89.Geiser DM, Pitt JI, Taylor JW. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci U S A. 1998;95(1):388–93.PubMedPubMedCentralCrossRefGoogle Scholar
- 90.Guo X, Gao L, Wang Z, Feng C, Xing B. Top 100 Most-cited articles on pituitary adenoma: a Bibliometric analysis. World Neurosurg. 2018;116:e1153–67.PubMedCrossRefPubMedCentralGoogle Scholar
- 91.Nasir SAR, Gilani JA, Fatima K, Faheem U, Kazmi O, Siddiqi J, Khosa F. Top 100 Most-Cited Articles on Spontaneous Intracerebral Hemorrhage: A Bibliometric Analysis. World Neurosurg. 2018;110:445–449.e446.PubMedCrossRefPubMedCentralGoogle Scholar
- 92.Aznar-Sánchez JA, Velasco-Muñoz JF, Belmonte-Ureña LJ, Manzano-Agugliaro F. The worldwide research trends on water ecosystem services. Ecol Indic. 2019;99:310–23.CrossRefGoogle Scholar
- 93.Zhang L, Gong J, Zhang Y. A review of ecosystem services: a bibliometric analysis based on web of science. Acta Ecol Sin. 2016;36:5967–77.Google Scholar
- 94.Hassan S-U, Haddawy P, Zhu J. A bibliometric study of the world’s research activity in sustainable development and its sub-areas using scientific literature. Scientometrics. 2014;99(2):549–79.CrossRefGoogle Scholar
- 95.Velasco-Muñoz J, Aznar-Sánchez J, Belmonte-Ureña L, López-Serrano M. Advances in water use efficiency in agriculture: a bibliometric analysis. Water. 2018;10(4):377.CrossRefGoogle Scholar
- 96.Niu B, Loáiciga HA, Wang Z, Zhan FB, Hong S. Twenty years of global groundwater research: a science citation index expanded-based bibliometric survey (1993–2012). J Hydrol. 2014;519:966–75.CrossRefGoogle Scholar
Copyright information
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.