RETRACTED ARTICLE: Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line

  • Abolfazl Akbarzadeh
  • Mohammad Samiei
  • Sang Woo JooEmail author
  • Maryam Anzaby
  • Younes Hanifehpour
  • Hamid Tayefi Nasrabadi
  • Soodabeh DavaranEmail author



The aim of present study was to develop the novel methods for chemical and physical modification of superparamagnetic iron oxide nanoparticles (SPIONs) with polymers via covalent bonding entrapment. These modified SPIONs were used for encapsulation of anticancer drug doxorubicin.


At first approach silane–grafted magnetic nanoparticles was prepared and used as a template for polymerization of the N-isopropylacrylamide (NIPAAm) and methacrylic acid (MAA) via radical polymerization. This temperature/pH-sensitive copolymer was used for preparation of DOX–loaded magnetic nanocomposites. At second approach Vinyltriethoxysilane-grafted magnetic nanoparticles were used as a template to polymerize PNIPAAm-MAA in 1, 4 dioxan and methylene-bis-acrylamide (BIS) was used as a cross-linking agent. Chemical composition and magnetic properties of Dox–loaded magnetic hydrogel nanocomposites were analyzed by FT-IR, XRD, and VSM.


The results demonstrate the feasibility of drug encapsulation of the magnetic nanoparticles with NIPAAm–MAA copolymer via covalent bonding. The key factors for the successful prepardtion of magnetic nanocomposites were the structure of copolymer (linear or cross-linked), concentration of copolymer and concentration of drug. The influence of pH and temperature on the release profile of doxorubicin was examined. The in vitro cytotoxicity test (MTT assay) of both magnetic DOx–loaded nanoparticles was examined. The in vitro tests showed that these systems are no toxicity and are biocompatible.


IC50 of DOx–loaded Fe3O4 nanoparticles on A549 lung cancer cell line showed that systems could be useful in treatment of lung cancer.


Superparamagnetic iron oxide nanoparticles (SPIONs) Drug loading efficiency Radical polymerization N-Isopropylacrylamide-methyl metacrylc acid (NIPAAm-MAA) 



The authors thank Department of Medical Nanotechnology, Faculty of Advanced Medical Science of Tabriz University for all supports provided. This work is funded by 2012 Yeungnam University Research Grant.

Supplementary material

12951_2012_219_MOESM1_ESM.tiff (1.3 mb)
Authors’ original file for figure 1
12951_2012_219_MOESM2_ESM.tiff (146 kb)
Authors’ original file for figure 2
12951_2012_219_MOESM3_ESM.tiff (348 kb)
Authors’ original file for figure 3
12951_2012_219_MOESM4_ESM.tiff (353 kb)
Authors’ original file for figure 4
12951_2012_219_MOESM5_ESM.tiff (330 kb)
Authors’ original file for figure 5
12951_2012_219_MOESM6_ESM.tiff (4.7 mb)
Authors’ original file for figure 6
12951_2012_219_MOESM7_ESM.tiff (1.2 mb)
Authors’ original file for figure 7
12951_2012_219_MOESM8_ESM.tiff (515 kb)
Authors’ original file for figure 8
12951_2012_219_MOESM9_ESM.tiff (1.6 mb)
Authors’ original file for figure 9
12951_2012_219_MOESM10_ESM.tiff (1.4 mb)
Authors’ original file for figure 10


  1. 1.
    Akbarzadeh A, Asgari D, Zarghami N, Mohammad R, Davaran S: Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible co-polymers. Int J Nanomedicine. 2012, 7: 511-526.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Akbarzadeh A, Zarghami N, Mikaeili H, Asgari D, Goganian AM, Khiabani HK, Samiei M, Davaran S: Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnology, Science and Applications. 2012, 5: 13-25.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Akbarzadeh A, Samiei M, Davaran S: Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012, 7: 144-10.1186/1556-276X-7-144.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Shikata F, Tokumitso H, Ichikava H: In vitro cellular accumulation of gadolinium incorporated into chitosane nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm. 2002, 53: 57-63. 10.1016/S0939-6411(01)00198-9.PubMedCrossRefGoogle Scholar
  5. 5.
    Sledge G, Miller K: Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur J Cancer. 2003, 39: 1668-1675. 10.1016/S0959-8049(03)00273-9.PubMedCrossRefGoogle Scholar
  6. 6.
    Stubbs M, McSheely PMJ, Griffiths JR: Causes and consequence of tumor acidity and implications for treatment. Mol Med Today. 2000, 6: 15-19. 10.1016/S1357-4310(99)01615-9.PubMedCrossRefGoogle Scholar
  7. 7.
    Tannock IF, Rotin D: Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989, 49: 4373-4384.PubMedGoogle Scholar
  8. 8.
    Teicher BA: Molecular targets and cancer therapeutics: discovery, development and clinical validation. Drug Resist Update. 2000, 3: 67-73. 10.1054/drup.2000.0123.CrossRefGoogle Scholar
  9. 9.
    Yoo HS, Park TG: In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. Polymer Prepr. 2000, 41: 992-993.Google Scholar
  10. 10.
    Krizzova J, Spanova A, Rittich B, Horak D: J Chromatogr A. 2005, 1064: 247-10.1016/j.chroma.2004.12.014.CrossRefGoogle Scholar
  11. 11.
    Beletsi A, Leondiadis L, Klepetsanis P: Effect of preparative variables on the properties of PLGA-mPEG copolymers related to their applications in controlled drug delivery. Int J Pharm. 1999, 182: 187-197. 10.1016/S0378-5173(99)00058-7.PubMedCrossRefGoogle Scholar
  12. 12.
    Y HS, P TG: Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Control Release. 2001, 70: 63-70. 10.1016/S0168-3659(00)00340-0.CrossRefGoogle Scholar
  13. 13.
    Kataoka K, Kwon G, Yokoyama M, Okano T, Sakurai Y: Block copolymer micelles as vehicles for drug delivery. J Control Release. 1992, 24: 119-132.Google Scholar
  14. 14.
    Kwon GS, Okano T: Polymeric micelle as new drug carriers. Adv Drug Del Rev. 1996, 16: 107-116.CrossRefGoogle Scholar
  15. 15.
    Kwon G, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K: Block copolymer micelles for drug delivery: loading and release of doxorubicin. J Control Release. 1997, 48: 195-201. 10.1016/S0168-3659(97)00039-4.CrossRefGoogle Scholar
  16. 16.
    Kwon GS, Suwa S, Yokoyama M, Okano T, Sakurai Y, Kataoka K: Physical entrapment of adriamycin in AB block copolymer micelles. Pharm Res. 1995, 12: 192-195. 10.1023/A:1016266523505.PubMedCrossRefGoogle Scholar
  17. 17.
    Thünemann AF, Schütt D, Kaufner L, Pison U, Möhwald H: Maghemite nanoparticles protectively coated with poly (ethyleneimine) and poly(ethylene oxide)-block-poly(glutamic acid). Langmuir. 2006, 22: 2351-2357. 10.1021/la052990d.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu TY, Hu SH, Liu KH, Liu DM, Chen SY: Study on controlled drug permeation of magnetic-sensitive ferrogels: effect of Fe3O4 and PVA. J Control Release. 2008, 126: 228-236. 10.1016/j.jconrel.2007.12.006.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang J, Misra RD: Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater. 2007, 3: 838-850. 10.1016/j.actbio.2007.05.011.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang JL, Srivastava RS, Misra RD: Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir. 2007, 23: 6342-6351. 10.1021/la0636199.PubMedCrossRefGoogle Scholar
  21. 21.
    Zintchenko A, Ogris M, Wagner E: Temperature dependent gene expression induced by PNIPAM-based copolymers: potential of hyperthermia in gene transfer. Bioconjug Chem. 2006, 17: 766-772. 10.1021/bc050292z.PubMedCrossRefGoogle Scholar
  22. 22.
    Meyer DE, Shin BC, Kong GA, Dewhirst MW, Chilkoti A: Drug targeting using thermally responsive polymers and local hyperthermia. J Control Release. 2001, 74: 213-224. 10.1016/S0168-3659(01)00319-4.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen FH, Gao Q, Ni JZ: The grafting and release behavior of doxorubincin from Fe3O4@SiO2 core-shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery. Nanotechnology. 2008, 19: 165103-10.1088/0957-4484/19/16/165103.PubMedCrossRefGoogle Scholar
  24. 24.
    Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan WH: Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir. 2001, 17: 2900-2906. 10.1021/la0008636.CrossRefGoogle Scholar
  25. 25.
    Alireza V, Haleh M, Mohammad S, Samad MF, Nosratalah Z: Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Research Letters. 2012, 7: 480-10.1186/1556-276X-7-480.CrossRefGoogle Scholar
  26. 26.
    Mohammad k, Abolfazl A, Soodabeh D, Kedar E, Algi O, Golod G, Babai I, Barenholz Y: Delivery of cytokines by liposomes III. iposome-encapsulated GMCSF and TNF-a show improved pharmacokinetics and biological activity and reduced toxicity in mice. J Immunother. 1997, 20: 180-193. 10.1097/00002371-199705000-00003.CrossRefGoogle Scholar
  27. 27.
    Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S: Quantum dots: synthesis, bioapplications,and toxicityNanoscale. Research Letters. 2012, 7: 480-Google Scholar
  28. 28.
    Wu CL, He H, Gao HJ, Liu G, Ma RJ, An YL, Shi LQ: Synthesis of Fe3O4@SiO2@polymer nanoparticles for controlled drug release. Science China Chemistry. 2010, 53 (3): 514-518. 10.1007/s11426-010-0084-1.CrossRefGoogle Scholar
  29. 29.
    Yang J, Lee CH, Ko HJ, Suh JS, Yoon HG, Lee K: Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed Engl. 2007, 46: 8836-8839. 10.1002/anie.200703554.PubMedCrossRefGoogle Scholar
  30. 30.
    Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ: Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl. 2008, 47: 5362-5365. 10.1002/anie.200800857.PubMedCrossRefGoogle Scholar
  31. 31.
    Savva M, Duda E, Huang L: A genetically modified recombinant tumor necrosis factor-alpha conjugated to the distal terminals of liposomal surface grafted poly-ethyleneglycol chains. Int J Pharm. 1999, 184: 45-51. 10.1016/S0378-5173(99)00092-7.PubMedCrossRefGoogle Scholar
  32. 32.
    Yuyama Y, Tsujimoto M, Fujimoto Y, Oku N: Potential usage of thermosensitive liposomes for site-specific delivery of cytokines. Cancer Lett. 2000, 155: 71-77. 10.1016/S0304-3835(00)00410-9.PubMedCrossRefGoogle Scholar
  33. 33.
    Mohammad P, Nosratollah Z, Mohammad R, Abbas A, Javad R: The inhibitory effect of Curcuma longa extract on telomerase activity in A549 lung cancer cell line. Afr J Biotechnol. 2010, 9 (6): 912-919.CrossRefGoogle Scholar
  34. 34.
    Ito A, Shinkai M, Honda H, Kobayashi T: Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005, 100: 1-11. 10.1263/jbb.100.1.PubMedCrossRefGoogle Scholar
  35. 35.
    Sturgeon RJ, Schulman SG: Electronic absorption spectra and protolytic equilibria of doxorubicin: direct spectrophotometric determination of microconstants. J Pharm Sci. 1977, 66: 958-961. 10.1002/jps.2600660714.PubMedCrossRefGoogle Scholar
  36. 36.
    Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H: Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology. 2003, 229: 838-846. 10.1148/radiol.2293021215.PubMedCrossRefGoogle Scholar
  37. 37.
    Gupta AK, Curtis AS: Surface modified superparamagnetic nanoparti-cles for drug delivery: interaction studies with human fibroblasts inculture. J Mater Sci Mater Med. 2004, 15: 493-496.PubMedCrossRefGoogle Scholar
  38. 38.
    Mahmoudi M, Sant S, Wang B, Laurent S, Sen T: Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2010, 63 (1-2): 24-46.PubMedCrossRefGoogle Scholar
  39. 39.
    Davaran S, Entezami AA: Synthesis and Hydrolysis of Modified Poly Vinyl Alcohols Containing Ibuprofen Pendent Groups. Iran Polym J. 1996, 5 (3): 188-191.Google Scholar
  40. 40.
    Davaran S, Entezami AA: A Review on Application of Polymers in New Drug Delivery Systems. Iran Polym J. 1994, 6 (4): 273-289.Google Scholar
  41. 41.
    Xiao X, He Q, Huang K: Possible magnetic multifunctional nanoplatforms in medicine. Med Hypotheses. 2007, 68: 680-682. 10.1016/j.mehy.2006.06.061.PubMedCrossRefGoogle Scholar
  42. 42.
    Tu YF, Wang XH, Zhang D, Zhou QF, Wu C: Self-assembled nanostructure of a novel coil-rod diblock copolymer in dilute Solution. J Am Chem Soc. 2000, 122: 10201-10205. 10.1021/ja002163t.CrossRefGoogle Scholar

Copyright information

© Akbarzadeh et al.; licensee BioMed Central Ltd. 2012

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Abolfazl Akbarzadeh
    • 1
  • Mohammad Samiei
    • 2
  • Sang Woo Joo
    • 3
    Email author
  • Maryam Anzaby
    • 1
  • Younes Hanifehpour
    • 3
  • Hamid Tayefi Nasrabadi
    • 1
  • Soodabeh Davaran
    • 1
    Email author
  1. 1.Department of Medical Nanotechnology, Faculty of Advanced Medical ScienceTabriz University of Medical SciencesTabrizIran
  2. 2.Department of Endodontics, Dental SchoolTabriz University of Medical SciencesTabrizIran
  3. 3.School of Mechanical Engineering, WCU Nanoresearch CenterYeungnam UniversityGyeongsanSouth Korea

Personalised recommendations