Advertisement

Use of maternal information for QTL detection in a (grand)daughter design

  • Marc Bolard
  • Didier BoichardEmail author
Open Access
Research

Abstract

In a (grand)daughter design, maternal information is often neglected because the number of progeny per dam is limited. The number of dams per maternal grandsire (MGS), however, could be large enough to contribute to QTL detection. But dams and MGS usually are not genotyped, there are two recombination opportunities between the MGS and the progeny, and at a given location, only half the progeny receive a MGS chromosomal segment. A 3-step procedure was developed to estimate: (1) the marker phenotypes probabilities of the MGS; (2) the probability of each possible MGS haplotype; (3) the probabilities that the progeny receives either the first, or second MGS segment, or a maternal grandam segment. These probabilities were used for QTL detection in a linear model including the effects of sire, MGS, paternal QTL, MGS QTL and maternal grandam QTL. Including the grandam QTL effect makes it possible to detect QTL in the grandam population, even when MGS are not informative. The detection power, studied by simulation, was rather high, provided that MGS family size was greater than 50. Using maternal information in the French dairy cattle granddaughter design made it possible to detect 23 additional QTL genomewise significant.

Keywords

QTL detection daughter design granddaughter design dairy cattle 

(To access the full article, please see PDF)

Copyright information

© INRA, EDP Sciences 2002

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors and Affiliations

  1. 1.Station de génétique quantitative et appliquéeInstitut national de la recherche agronomiqueJouy-en-Josas cedexFrance
  2. 2.URCEORennesFrance

Personalised recommendations