Advertisement

Reproductive Sciences

, Volume 19, Issue 3, pp 312–316 | Cite as

Combined Effect of GSTT1 and GSTM1 Polymorphisms on Human Male Infertility in North Indian Population

  • Deepika Jaiswal
  • Ravindra Sah
  • Neeraj K. Agrawal
  • U. S. Dwivedi
  • Sameer Trivedi
  • Kiran SinghEmail author
Original Articles

Abstract

Genes of different pathways regulate spermatogenesis, and complexity of spermatogenic process indicates that polymorphisms or mutations in these genes could cause male infertility. Detoxification pathway is involved in the regulation of spermatogenesis by reducing oxidative stress and contributes to the maintenance of global methylation in concert with other pathways. Glutathione S-transferases (GSTs) belong to the family of phase II antioxidant enzymes involved in the cellular detoxification of various physiological substances. Glutathione S-transferases act as an antioxidant and protect spermatozoa from oxidative stress. Increase in the levels of reactive oxygen species (ROS) along with reduced activity of GSTs may result in sperm membrane damage and DNA fragmentation. A case–control study was done to elucidate the role of deletion polymorphism of GSTT1 and GSTM1 genes from GSTs family on idiopathic human male infertility. The study comprises 2 groups: 113 nonobstructive azoospermia patients and 91 healthy fertile controls. Genomic DNA was analyzed by polymerase chain reaction for GSTT1 and GSTM1 genes. The study showed statistically significant protective association of GSTT1 null genotype with human male infertility (odds ratio [OR]: 0.3, 95% confidence interval [CI] 0.143-0.9966, P = .048) but not with GSTM1 null genotype (OR: 0.66, 95% CI 0.3653-1.2234, P = .19). Also, combination of null genotypes of GSTM1 and GSTT1 confers protective effect (OR: 0.28, CI 0.0801-0.948; P = .04). Probably, individuals bearing GSTM1 and GSTT1 (−/−) genotypes may have protective effect by gene–gene interaction mechanism. In summary, our study underscores the significance of combined effect of GSTT1 and GSTM1 null genotypes in modulating the risk of male infertility.

Keywords

infertility detoxification ROS GST spermatogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nat Med. 2008;14(11): 1197–1213.CrossRefGoogle Scholar
  2. 2.
    Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat cell Biol. 2002; (suppl 4):S41–S49.Google Scholar
  3. 3.
    McLachlan RI, Bryan MK. State of the art for genetic testing of infertile men. J Clin Endocrinol Metab. 2010;95(3):1013–1024.CrossRefGoogle Scholar
  4. 4.
    Nachtigall RD. International disparities in access to infertility services. Fertil Steril. 2006;85(4):871–875.CrossRefGoogle Scholar
  5. 5.
    Merzenich H, Zeeb H, Blettner M. Decreasing sperm quality: a global problem? BMC Public Health. 2010;10:24.Google Scholar
  6. 6.
    Lewis SEM, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005;322(1): 33–41.CrossRefGoogle Scholar
  7. 7.
    Shamsi MB, Venkatesh S, Kumar R, et al. Antioxidant levels in blood and seminal plasma and their impact on sperm parameters in infertile men. Indian J Biochem Biophys. 2010; 47(1):38–43.PubMedGoogle Scholar
  8. 8.
    Finotti AC, Costa E Silva RC, Bordin BM, Silva CT, Moura KK. Glutathione S-transferase M1 and T1 polymorphism in men with idiopathic infertility. Genet Mol Res. 2009;8(3): 1093–1098.CrossRefGoogle Scholar
  9. 9.
    Rubes J, Selevan SG, Sram RJ, Evenson DP, Perreault SD. GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res. 2007;625(1–2):20–28.CrossRefGoogle Scholar
  10. 10.
    Babu KA, Rao KL, Kanakavalli M K, Suryanarayana VV, Deenadayal M, Singh L. CYP1A1, GSTM1 and GSTT1 genetic polymorphism is associated with susceptibility to polycystic ovaries in South Indian women. Reprod Biomed Online. 2004;9(2): 194–200.CrossRefGoogle Scholar
  11. 11.
    Ding Y, Chen ZF, Lin RY, et al. Relationship between endometriosis and glutathione S-transferase M1, T1 genes of the Uygurs and Hans in Xinjiang [in Chinese]. Zhonghua Fu Chan Ke Za Zhi. 2004;39(2):101–104.PubMedGoogle Scholar
  12. 12.
    Sergentanis TN, Economopoulos KP. GSTT1 and GSTP1 polymorphisms and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2009;121(1):195–202.CrossRefGoogle Scholar
  13. 13.
    Gopalakrishnan B, Shaha C. Inhibition of sperm glutathione S-transferase leads to functional impairment due to membrane damage. FEBS Lett 1998;422(3):296–300.CrossRefGoogle Scholar
  14. 14.
    Strange RC, Spiteri MA, Ramachandran S, Fryer AA. Glutathione-Stransferase family of enzymes. Mutat Res. 2001; 482(1–2):21–26.CrossRefGoogle Scholar
  15. 15.
    Pemble S, Schroeder KR, Spencer SR, et al. Human glutathione S-transferase Theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J. 1994;300(pt 1): 271–276.CrossRefGoogle Scholar
  16. 16.
    Castellon EA. Influence of age, hormones and germ cells on glutathione S-transferase activity in cultured Sertoli cells. Int J Androl. 1999;22(1):49–55.CrossRefGoogle Scholar
  17. 17.
    Zamudio NM, Chong S, O’Bryan MK. Epigenetic regulation in male germ cells. Reproduction. 2008;136(2):131–146.CrossRefGoogle Scholar
  18. 18.
    Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 1993;14(9): 1821–1824.CrossRefGoogle Scholar
  19. 19.
    Katoh T, Nagata N, Kuroda Y, et al. Glutathione S-transferase M1 (GSTM1), and T1 (GSTT1) genetic polymorphism and susceptibility to gastric and colorectal adenocarcinoma. Carcinogenesis. 1996;17(9):1855–1859.CrossRefGoogle Scholar
  20. 20.
    Erdfelder E, Faul F, Buchner A. G*POWER: A general power analysis program. Behav Res Meth Instrum Comput. 1996;28: 1–11.CrossRefGoogle Scholar
  21. 21.
    Mann CL, Davies MB, Boggild MD, et al. Glutathione S-transferase polymorphisms in MS: their relationship to disability. Neurology 2000;54(3):552–557.CrossRefGoogle Scholar
  22. 22.
    Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ, Agarwal A. Relationship between oxidative stress, semen characteristics and clinical diagnosis in men undergoing infertility investigation. Fertil Steril. 2000;73(3):459–464.CrossRefGoogle Scholar
  23. 23.
    Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005;95(4): 503–507.CrossRefGoogle Scholar
  24. 24.
    Polonikov AV, Yarosh SL, Kokhtenko EV, Starodubova NI, Pakhomov SP, Orlova VS. The functional genotype of glutathione S-transferase T1 gene is strongly associated with increased risk of idiopathic infertility in Russian men. Fertil Steril. 2010;94(3): 1144–1147.CrossRefGoogle Scholar
  25. 25.
    Wu QF, Xing JP, Tang KF, et al. Genetic polymorphism of glutathione S-transferase T1 gene and susceptibility to idiopathic azoospermia or oligospermia in northwestern China. Asian J Androl 2008;10(2):266–270.CrossRefGoogle Scholar
  26. 26.
    Safarinejad MR, Shafiei N, Safarinejad S. The association of glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility. J Hum Genet. 2010; 55(9):565–570.CrossRefGoogle Scholar
  27. 27.
    Dordevic V, Nikolic A, Ljujic M, et al. Combined effect of GSTM1 gene deletion, GSTT1 gene deletion and MTHFR C677T mutation in male infertility. Arch Biol Sci. 2010;62(3):525–530.CrossRefGoogle Scholar
  28. 28.
    Dhillon VS, Shahid M, Husain SA. Associations of MTHFR DNMT3b 4977 bp deletion in mtDNA and GSTM1 deletion, and aberrant CpG island hypermethylation of GSTM1 in nonobstructive infertility in Indian men. Mol Hum Reprod. 2007; 13(4):213–222.CrossRefGoogle Scholar
  29. 29.
    Vani GT, Mukesh N, Siva Prasad B, et al. Role of glutathione S-transferase Mu-1 (GSTM1) polymorphism in oligospermic infertile males. Andrologia. 2009;42(4):213–217.CrossRefGoogle Scholar
  30. 30.
    Khazamipour N, Noruzinia M, Fatehmanesh P, Keyhanee M, Pujol P. MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: the role of epigenetics in male infertility. Hum Reprod. 2009;24(9):2361–2364.CrossRefGoogle Scholar
  31. 31.
    Singh K, Singh SK, Sah R, Singh I, Raman R. Mutation C677T in the methylenetetrahydrofolate reductase gene is associated with male infertility in an Indian population. Int J Androl. 2005; 28(2):115–119.CrossRefGoogle Scholar
  32. 32.
    Paracchini V, Garte S, Taioli E. MTHFR, C677T polymorphism, GSTM1 deletion and male infertility: a possible suggestion of a gene-gene interaction? Biomarkers. 2006;11(1):53–60.CrossRefGoogle Scholar
  33. 33.
    Economopoulos KP, Sergentanis TN, Choussein S., Glutathione-S-transferase gene (GSTM1, GSTT1 and GSTP1) and idiopathic male infertility: novel perspectives versus facts. J Hum Genet. 2010;55(9):557–558.CrossRefGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  • Deepika Jaiswal
    • 1
  • Ravindra Sah
    • 2
  • Neeraj K. Agrawal
    • 3
  • U. S. Dwivedi
    • 4
  • Sameer Trivedi
    • 4
  • Kiran Singh
    • 1
    Email author
  1. 1.Department of Molecular and Human GeneticsBanaras Hindu UniversityVaranasiIndia
  2. 2.Sah Speciality ClinicVaranasiIndia
  3. 3.Department of Endocrinology and Metabolism, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
  4. 4.Department of Urology, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations