Advertisement

Reproductive Sciences

, Volume 19, Issue 3, pp 298–305 | Cite as

Differential Effect of Intrauterine Hypoxia on Caspase 3 and DNA Fragmentation in Fetal Guinea Pig Hearts and Brains

  • LaShauna C. Evans
  • Hongshan Liu
  • Loren P. ThompsonEmail author
Original Articles

Abstract

The aim of this study is to quantify the effect of intrauterine hypoxia (HPX) and the role of nitric oxide (NO) on the apoptotic enzyme, caspase 3, and DNA fragmentation in fetal heart and brain. Hypoxia and NO are important regulators of apoptosis, although this has been little studied in the fetal organs. We investigated the effect of intrauterine HPX on apoptosis and the role of NO in both fetal hearts and brains. Pregnant guinea pigs were exposed to room temperature (N = 14) or 10.5% O2 (N = 12) for 14 days prior to term (term = 65 days) and administered water or l-N6-(1-iminoethyl)-lysine (LNIL), an inducible nitric oxide synthase (iNOS) inhibitor, for 10 days. Fetal hearts and brains were excised from anesthetized near-term fetuses for study. Chronic HPX decreased pro- and active caspase 3, caspase 3 activity, and DNA fragmentation levels in fetal hearts compared with normoxic controls. l-N6-(1-iminoethyl)-lysine prevented the HPX-induced decrease in caspase 3 activity but did not alter DNA fragmentation levels. In contrast, chronic HPX increased both apoptotic indices in fetal brains, which were inhibited by LNIL. Thus, the effect of HPX on apoptosis differs between fetal organs, and NO may play an important role in modulating these effects.

Keywords

fetal hypoxia apoptosis nitric oxide heart brain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones RD, Morice AH, Emery CJ. Effects of perinatal exposure to hypoxia upon the pulmonary circulation of the adult rat. Physiol Res. 2004;53(1): 11–17.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    VanWijk MJ, Kublickiene K, Boer K, VanBavel E. Vascular function in preeclampsia. Cardiovasc Res. 2000;47(1):38–48.CrossRefGoogle Scholar
  3. 3.
    Richardson BS, Bocking AD. Metabolic and circulatory adaptations to chronic hypoxia in the fetus. Comp Biochem Physiol A Mol Integr Physiol. 1998;119(3):717–723.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Zhang L. Prenatal hypoxia and cardiac programming. J Soc Gynecol Investig. 2005;12(1):2–13.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Louey S, Thornburg KL. The prenatal environment and later cardiovascular disease. Early Hum Dev. 2005;81(9):745–751.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    de Moissac D, Gurevich RM, Zheng H, Singal PK, Kirshenbaum LA. Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol. 2000;32(1):53–63.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Grilli A, De Lutiis MA, Patruno A, et al. Effect of chronic hypoxia in inducible nitric oxide synthase expression in rat myocardial tissue. Exp Biol Med (Maywood). 2003;228(8):935–942.CrossRefGoogle Scholar
  8. 8.
    Bae S, Xiao Y, Li G, Casiano CA, Zhang L. Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart. Am J Physiol Heart Circ Physiol. 2003;285(3): H983–H990.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Guo HC, Zhang Z, Zhang LN, et al. Chronic intermittent hypobaric hypoxia protects the heart against ischemia/reperfusion injury through upregulation of antioxidant enzymes in adult guinea pigs. Acta Pharmacol Sin. 2009;30(7):947–955.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Thompson L, Dong Y, Evans L. Chronic hypoxia increases inducible NOS-derived nitric oxide in fetal guinea pig hearts. Pediatr Res. 2009;65(2): 188–192.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Thompson LP, Dong Y. Chronic hypoxia decreases endothelial nitric oxide synthase protein expression in fetal guinea pig hearts. J Soc Gynecol Investig. 2005;12(6):388–395.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Razavi HM, Hamilton JA, Feng Q. Modulation of apoptosis by nitric oxide: implications in myocardial ischemia and heart failure. Pharmacol Ther. 2005; 106(2): 147–162.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Andréka P, Tran T, Webster KA, Bishopric NH. Nitric oxide and the promotion of cardiac myocyte apoptosis. Mol Cell Biochem. 2004;263(1–2):35–53.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Shimojo T, Hiroe M, Ishiyama S, Ito H, Nishikawa T, Marumo F. Nitric oxide induces apoptotic death of cardiomyocytes via a cyclic-GMP-dependent pathway. Exp Cell Res. 1999;247(1): 38–47.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Oyama J, Frantz S, Blais C Jr, Kelly R, Bourcier T. Nitric oxide, cell death, and heart failure. Heart Fail Rev. 2002;7(4): 327–334.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 1999;84(3):253–256.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Connor JR, Manning PT, Settle SL, et al. Suppression of adjuvant-induced arthritis by selective inhibition of inducible nitric oxide synthase. Eur J Pharmacol. 1995;273(1–2):15–24.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Corriu C, Feletou M, Puybasset L, Bea ML, Berdeaux A, Vanhoutte PM. Endothelium-dependent hyperpolarization in isolated arteries taken from animals treated with NO-synthase inhibitors. J Cardiovasc Pharmacol. 1998;32(6):944–950.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Movassagh M, Foo RS. Simplified apoptotic cascades. Heart Fail Rev. 2008;13(2):111–119.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Castillo-Meléndez M, Chow JA, Walker DW. Lipid peroxidation, caspase-3 immunoreactivity, and pyknosis in late gestation fetal sheep brain after umbilical cord occlusion. Pediatr Res. 2004; 55(5):864–871.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Lane RH, Ramirez RJ, Tsirka AE, et al. Uteroplacental insufficiency lowers the threshold towards hypoxia-induced cerebral apoptosis in growth retarded fetal rats. Brain Res. 2001;895(1–2): 186–193.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hilario E, Rey-Santano MC, Goñi-de-Cerio F, et al. Cerebral blood flow and morphological changes after hypoxicischaemic injury in preterm lambs. Acta Paediatr. 2005;94(7): 903–911.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Blomgren K, Leist M, Groc L. Pathological apoptosis in the developing brain. Apoptosis. 2007;12(5):993–1010.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Zhu C, Wang X, Xu F, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ. 2005;12(2):162–176.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Thoresen M, Stas S, Puka-Sundvall M, et al. Post-hypoxic hypothermia reduces cerebrocortical release of no and excitotoxins. Neuroreport. 1997;8(15):3359–3362.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Peeters-Scholte C, Kostger J, Veldhuis W, et al. Neuroprotection by selective nitric oxide synthase inhibition at 24 hours after perinatal hypoxia-ischemia. Stroke. 2002;33(9):2304–2310.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zubrow AB, Delivoria-Papadopoulos M, Ashraf QM, Ballesteros JR, Fritz KI, Mishra OP. Nitric oxide-mediated expression of Bax protein and DNA fragmentation during hypoxia in neuronal nuclei from newborn piglets. Brain Res. 2002;954(1):60–67.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Parikh NA, Katsetos CD, Ashraf QM, et al. Hypoxia-induced caspase-3 activation and DNA fragmentation in cortical neurons of newborn piglets: role of nitric oxide. Neurochem Res. 2003; 28(9):1351–1357.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mishra OP, Randis T, Ashraf QM, Delivoria-Papadopoulos M. Hypoxia-induced Bax and Bcl-2 protein expression, caspase-9 activation, DNA fragmentation, and lipid peroxidation in mitochondria of the cerebral cortex of newborn piglets: the role of nitric oxide. Neuroscience. 2006;141(3):1339–1349.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Dong Y, Yu Z, Sun Y, et al. Chronic fetal hypoxia produces selective brain injury associated with altered nitric oxide synthases. Am J Obstet Gynecol. 2011;204(3):254.e16–e28.CrossRefGoogle Scholar
  31. 31.
    Graham RM, Frazier DP, Thompson JW, et al. A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J Exp Biol. 2004;207(pt 18):3189–3200.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Coles JG, Boscarino C, Takahashi M, et al. Cardioprotective stress response in the human fetal heart. J Thorac Cardiovasc Surg. 2005; 129(5):1128–1136.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jiang C, Lu H, Vincent KA, et al. Gene expression profiles in human cardiac cells subjected to hypoxia or expressing a hybrid form of HIF-1α. Physiol Genomics. 2002;8(1):23–32.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Li J, Billiar TR, Talanian RV, Kim YM. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun. 1997;240(2):419–424.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Li J, Bombeck CA, Yang S, Kim YM, Billiar TR. Nitric oxide suppresses apoptosis via caspase activation and mitochondrial dysfunction in cultured hepatocytes. J Biol Chem. 1999; 274(24):17325–17333.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kim YM, Talanian RV, Billiar TR. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem. 1997;272(49):31138–31148.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Maejima Y, Adachi S, Morikawa K, Ito H, Isobe M. Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. J Mol Cell Cardiol. 2005;38(1):163–174.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Mohr S, Zech B, Lapetina EG, Brune B. Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochem Biophys Res Commun. 1997;238(2):387–391.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Rössig L, Fichtlscherer B, Breitschopf K, et al. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem. 1999; 274(11):6823–6826.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    van Wijk SJ, Hageman GJ. Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion. Free Radic Biol Med. 2005;39(1):81–90.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Joza N, Pospisilik JA, Hangen E, et al. AIF: not just an apoptosisinducing factor. Ann N Y Acad Sci. 2009;1171:2–11.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Li G, Xiao Y, Estrella JL, Ducsay CA, Gilbert RD, Zhang L. Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat. J Soc Gynecol Investig. 2003; 10(5):265–274.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Broberg CS, Giraud GD, Schultz JM, Thornburg KL, Hohimer AR, Davis LE. Fetal anemia leads to augmented contractile response to hypoxic stress in adulthood. Am J Physiol Regul Integr Comp Physiol. 2003;285(3):R649–R655.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Morrison JL, Botting KJ, Dyer JL, Williams SJ, Thornburg KL, McMillen IC. Restriction of placental function alters heart development in the sheep fetus. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R306–R313.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Jonker SS, Zhang L, Louey S, Giraud GD, Thornburg KL, Faber JJ. Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J Appl Physiol. 2007;102(3): 1130–1142.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  • LaShauna C. Evans
    • 1
  • Hongshan Liu
    • 1
  • Loren P. Thompson
    • 1
    Email author
  1. 1.Department of Obstetrics, Gynecology and Reproductive Sciences, Bressler Research Building, Room 11-031University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations