Reproductive Sciences

, Volume 19, Issue 2, pp 173–180 | Cite as

Myocardial Performance and its Acute Response to Angiotensin II Infusion in Fetal Sheep Adapted to Chronic Anemia

  • Leah S. Bernard
  • Jason N. Hashima
  • A. Roger Hohimer
  • David J. Sahn
  • Muhammad Ashraf
  • Olli Vuolteenaho
  • Lowell E. Davis
  • Juha RasanenEmail author
Original Articles


Fetal chronic anemia causes lengthening of cardiomyocytes. In adults, severe left ventricular overload may lead to irreversible ventricular dysfunction. We hypothesized that in sheep fetuses with chronic anemia, remodeled myocardium would less successfully respond to angiotensin II (AT II) infusion than in fetuses without anemia. A total of 14 ewes with twin pregnancy underwent surgery at 113 ± 1 days of gestation. After a recovery period, anemia was induced by isovolumic hemorrhage in 1 fetus of each pair. At 126 ± 1 days of gestation, longitudinal myocardial velocities of the right (RV) and left (LV) ventricles were assessed at the level of the atrioventricular valve annuli via tissue Doppler imaging. Cardiac outputs were calculated by pulsed Doppler ultrasound. All measurements were performed at baseline and during fetal AT II infusion. Fetal serum cardiac natriuretic peptide (N-terminal peptide of proatrial natriuretic peptide [NT-proANP] and B-type natriuretic peptide [BNP]) concentrations were determined. Nine ewes successfully completed the experiment. At baseline, ventricular free wall thicknesses, cardiac outputs, and NT-proANP levels were significantly greater in the anemic fetuses than in the controls. The LV isovolumic contraction velocity (IVCV) acceleration and isovolumic relaxation velocity (IVRV) deceleration were lower (P < .05) in the anemic fetuses than in the controls. In the anemic fetuses, there was a positive correlation (R = .93, P < .01) between RV IVRV deceleration and NT-proANP concentration. Angiotensin II infusion increased (P < .05) LV IVCV acceleration in the anemic fetuses. We conclude that in anemic sheep fetuses, myocardial adaptation is associated with impaired LV early contraction and relaxation. However, the LV can improve its contractility with an inotropic stimulus, even in the presence of increased afterload.


heart remodeling cardiac function pregnancy ultrasound Doppler 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Copel JA, Grannum PA, Green JJ, et al. Fetal cardiac output in the isoimmunized pregnancy: a pulsed Doppler-echocardiographic study of patients undergoing intravascular intrauterine transfusion. Am J Obstet Gynecol. 1989;161(2):361–365.Google Scholar
  2. 2.
    Davis LE, Hohimer AR. Hemodynamics and organ blood flow in fetal sheep subjected to chronic anemia. Am J Physiol. 1991; 261(6 pt 2):R1542–R1548.Google Scholar
  3. 3.
    Davis LE, Hohimer AR, Giraud GD, Reller MD, Morton MJ. Right ventricular function in chronically anemic fetal lambs. Am J Obstet Gynecol. 1996;174(4):1289–1294.Google Scholar
  4. 4.
    Davis LE, Hohimer AR, Morton MJ. Myocardial blood flow and coronary reserve in chronically anemic fetal lambs. Am J Physiol. 1999;277(1 pt 2):R306–R313.Google Scholar
  5. 5.
    Jonker SS, Giraud MK, Giraud GD, et al. Cardiomyocyte enlargement, proliferation and maturation during chronic fetal anaemia in sheep. Exp Physiol. 2009;95(1):131–139.Google Scholar
  6. 6.
    Silberbach M, Woods LL, Hohimer AR, Shiota T, Matsuda Y, Davis LE. Role of endogenous atrial natriuretic peptide in chronic anemia in the ovine fetus: effects of a non-peptide antagonist for atrial natriuretic peptide receptor. Pediatr Res. 1995;38(5): 722–728.Google Scholar
  7. 7.
    Tamura N, Ogawa Y, Chusho H, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci U S A. 2000;97(8):4239–4244.Google Scholar
  8. 8.
    Sanderson JE, Wang M, Yu CM. Tissue Doppler imaging for predicting outcome in patients with cardiovascular disease. Curr Opin Cardiol. 2004;19(5):458–463.Google Scholar
  9. 9.
    Acharya G, Rasanen J, Makikallio K, et al. Metabolic acidosis decreases fetal myocardial isovolumic velocities in a chronic sheep model of increased placental vascular resistance. Am J Physiol Heart Circ Physiol. 2008;294(1):H498–H504.Google Scholar
  10. 10.
    Broome M, Haney M, Haggmark S, Johansson G, Aneman A, Biber B. Pressure-independent cardiac effects of angiotensin II in pigs. Acta Physiol Scand. 2004;182(2):111–119.Google Scholar
  11. 11.
    Moravec CS, Schluchter MD, Paranandi L, et al. Inotropic effects of angiotensin II on human cardiac muscle in vitro. Circulation. 1990;82(6):1973–1984.Google Scholar
  12. 12.
    Cheng CP, Suzuki M, Ohte N, Ohno M, Wang ZM, Little WC. Altered ventricular and myocyte response to angiotensin II in pacing-induced heart failure. Circ Res. 1996;78(5):880–892.Google Scholar
  13. 13.
    Li Y, Takemura G, Okada H, et al. ANG II type 1A receptor signaling causes unfavorable scar dynamics in the postinfarct heart. Am J Physiol Heart Circ Physiol. 2007;292(2):H946–H953.Google Scholar
  14. 14.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367(9507):356–367.Google Scholar
  15. 15.
    Davis LE, Hohimer AR, Brace RA. Changes in left thoracic duct lymph flow during progressive anemia in the ovine fetus. Am J Obstet Gynecol. 1996;174(5):1469–1476.Google Scholar
  16. 16.
    Rasanen J, Wood DC, Weiner S, Ludomirski A, Huhta JC. Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation. 1996;94(5):1068–1073.Google Scholar
  17. 17.
    Makikallio K, Vuolteenaho O, Jouppila P, Rasanen J. Ultrasonographic and biochemical markers of human fetal cardiac dysfunction in placental insufficiency. Circulation. 2002;105(17):2058–2063.Google Scholar
  18. 18.
    DeVore GR, Siassi B, Platt LD. Fetal echocardiography. IV. M-mode assessment of ventricular size and contractility during the second and third trimesters of pregnancy in the normal fetus. Am J Obstet Gynecol. 1984;150(8):981–988.Google Scholar
  19. 19.
    Vuolteenaho O, Koistinen P, Martikkala V, Takala T, Leppaluoto J. Effect of physical exercise in hypobaric conditions on atrial natriuretic peptide secretion. Am J Physiol. 1992;263(3 pt 2): R647–R652.Google Scholar
  20. 20.
    Haggstrom J, Hansson K, Kvart C, Karlberg BE, Vuolteenaho O, Olsson K. Effects of naturally acquired decompensated mitral valve regurgitation on the renin-angiotensin-aldosterone system and atrial natriuretic peptide concentration in dogs. Am J Vet Res. 1997;58(1):77–82.Google Scholar
  21. 21.
    Vogel M, Schmidt MR, Kristiansen SB, et al. Validation of myocardial acceleration during isovolumic contraction as a novel noninvasive index of right ventricular contractility: comparison with ventricular pressure-volume relations in an animal model. Circulation. 2002;105(14):1693–1699.Google Scholar
  22. 22.
    Vogel M, Cheung MM, Li J, et al. Noninvasive assessment of left ventricular force-frequency relationships using tissue Doppler-derived isovolumic acceleration: validation in an animal model. Circulation. 2003;107(12):1647–1652.Google Scholar
  23. 23.
    Nadal-Ginard B, Mahdavi V. Molecular basis of cardiac performance. Plasticity of the myocardium generated through protein isoform switches. J Clin Invest. 1989;84(6):1693–1700.Google Scholar
  24. 24.
    Lowes BD, Minobe W, Abraham WT, et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium J Clin Invest. 1997;100(9):2315–2324.Google Scholar
  25. 25.
    Reiser PJ, Portman MA, Ning XH, Moravec CS. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol. 2001;280(4): H1814–H1820.Google Scholar
  26. 26.
    Buckberg GD, Coghlan HC, Hoffman JI, Torrent-Guasp F. The structure and function of the helical heart and its buttress wrapping. VII. Critical importance of septum for right ventricular function. Semin Thorac Cardiovasc Surg. 2001;13(4):402–416.Google Scholar
  27. 27.
    Acharya G, Gutierrez J, Erkinaro T, et al. Can myocardial contractility be assessed by tissue Doppler imaging? An experimental study in an acute fetal sheep model. Ultrasound Obstet Gynecol. 2009;34(1):10.Google Scholar
  28. 28.
    Tulzer G, Gudmundsson S, Rotondo KM, Wood DC, Yoon GY, Huhta JC. Acute fetal ductal occlusion in lambs. Am J Obstet Gynecol. 1991;165(3):775–778.Google Scholar
  29. 29.
    Bamfo JE, Kametas NA, Chambers JB, Nicolaides KH. Maternal cardiac function in fetal growth-restricted and non-growth-restricted small-for-gestational age pregnancies. Ultrasound Obstet Gynecol. 2007;29(1):51–57.Google Scholar
  30. 30.
    Henein M, Gibson D. Dobutamine stress echocardiography: the long and short of it. Eur Heart J. 2002;23(7):520–522.Google Scholar
  31. 31.
    Hall C, Rouleau JL, Moye L, et al. N-terminal proatrial natriuretic factor. An independent predictor of long-term prognosis after myocardial infarction. Circulation. 1994;89(5):1934–1942.Google Scholar
  32. 32.
    De Muylder X, Fouron JC, Bard H, Urfer FN. Changes in the systolic time intervals of the fetal heart after surgical manipulation of the fetus. Am J Obstet Gynecol. 1983;147(3):285–288.Google Scholar
  33. 33.
    Acharya G, Erkinaro T, Makikallio K, Lappalainen T, Rasanen J. Relationships among Doppler-derived umbilical artery absolute velocities, cardiac function, and placental volume blood flow and resistance in fetal sheep. Am J Physiol Heart Circ Physiol. 2004; 286(4):H1266–H1272.Google Scholar
  34. 34.
    Brett CM, Teitel DF, Heymann MA, Rudolph AM. The young lamb can increase cardiovascular performance during isoflurane anesthesia. Anesthesiology. 1989;71(5):751–756.Google Scholar
  35. 35.
    Schmidt KG, Di Tommaso M, Silverman NH, Rudolph AM. Doppler echocardiographic assessment of fetal descending aortic and umbilical blood flows. Validation studies in fetal lambs. Circulation. 1991;83(5):1731–1737.Google Scholar
  36. 36.
    Makikallio K, Erkinaro T, Niemi N, et al. Fetal oxygenation and Doppler ultrasonography of cardiovascular hemodynamics in a chronic near-term sheep model. Am J Obstet Gynecol. 2006; 194(2):542–550.Google Scholar
  37. 37.
    Rasanen J, Wood DC, Debbs RH, Cohen J, Weiner S, Huhta JC. Reactivity of the human fetal pulmonary circulation to maternal hyperoxygenation increases during the second half of pregnancy: a randomized study. Circulation. 1998;97(3):257–262.Google Scholar
  38. 38.
    Gardiner HM, Pasquini L, Wolfenden J, et al. Myocardial tissue Doppler and long axis function in the fetal heart. Int J Cardiol. 2006;113(1):39–47.Google Scholar

Copyright information

© Society for Reproductive Investigation 2012

Authors and Affiliations

  • Leah S. Bernard
    • 1
  • Jason N. Hashima
    • 1
  • A. Roger Hohimer
    • 1
  • David J. Sahn
    • 2
  • Muhammad Ashraf
    • 2
  • Olli Vuolteenaho
    • 3
  • Lowell E. Davis
    • 1
  • Juha Rasanen
    • 1
    • 3
    Email author
  1. 1.Department of Obstetrics and GynecologyOregon Health Sciences UniversityPortlandUSA
  2. 2.Department of Pediatric CardiologyOregon Health Sciences UniversityPortlandUSA
  3. 3.Department of PhysiologyUniversity of OuluOuluFinland

Personalised recommendations