Reproductive Sciences

, Volume 18, Issue 11, pp 1092–1102 | Cite as

Interleukin-1 in Lipopolysaccharide Induced Chorioamnionitis in the Fetal Sheep

  • Clare A. Berry
  • Ilias Nitsos
  • Noah H. Hillman
  • J. Jane Pillow
  • Graeme R. Polglase
  • Boris W. Kramer
  • Matthew W. Kemp
  • John P. Newnham
  • Alan H. Jobe
  • Suhas G. KallapurEmail author
Original Articles


We tested the hypothesis that interleukin 1 (IL-1) mediates intra-amniotic lipopolysaccharide (LPS)-induced chorioamnionitis in preterm fetal sheep. Time-mated Merinoewes with singleton fetuses received IL-1α, LPS, or saline (control) by intra-amniotic injection 1 to 2 days before operative delivery at 124 ± 1 days gestational age (N = 5-9/group; term = 150 days). Recombinant human IL-1 receptor antagonist (rhIL-1ra) was given into the amniotic fluid 3 hours before intra-amniotic LPS or saline to block IL-1 signaling. Inflammation in the chorioamnion was determined by histology, cytokine messenger RNA (mRNA), protein expression, and by quantitation of activated inflammatory cells. Intra-amniotic IL-1 and LPS both induced chorioamnionitis. However, IL-1 blockade with IL-1ra did not decrease intra-amniotic LPS-induced increases in pro-inflammatory cytokine mRNAs, numbers of inflammatory cells, myeloperoxidase, or monocyte chemotactic protein-1-expressing cells in the chorioamnion. We conclude that IL-1 and LPS both can cause chorioamnionitis, but IL-1 is not an important mediator of LPS-induced chorioamnionitis in fetal sheep.


fetal inflammatory response syndrome prematurity innate immunity IL-1 receptor antagonist 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med. 2000;342(20):1500–1507.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Gomez R, Romero R, Ghezzi F, Yoon B, Mazor M, Berry S. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998;179(1):194–202.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Romero R, Gomez R, Ghezzi F, Yoon B, Mazor M, Edwin S, Berry S. A fetal systemic inflammatory response is followed by the spontaneous onset of preterm parturition. Am J Obstet Gynecol. 1998;179(1):186–193.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Watterberg K, Demers L, Scott S, Murphy S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics. 1996;97(2):210–215.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Andrews WW, Goldenberg RL, Faye-Petersen O, Cliver S, Goepfert AR, Hauth JC. The Alabama Preterm Birth study: polymorphonuclear and mononuclear cell placental infiltrations, other markers of inflammation, and outcomes in 23- to 32-week preterm newborn infants. Am J Obstet Gynecol. 2006;195(3):803–808.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Alexander J, Gilstrap L, Cox S, McIntire D, Leveno K. Clinical chorioamnionitis and the prognosis for very low birth weight infants. Obstet Gynecol. 1998;91(5 pt 1):725–729.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Viscardi RM, Muhumuza CK, Rodriguez A, et al. Inflammatory markers in intrauterine and fetal blood and cerebrospinal fluid compartments are associated with adverse pulmonary and neurologic outcomes in preterm infants Pediatr Res. 2004;55(6): 1009–1017.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gene MR, Gerber S, Nesin M, Witkin SS. Polymorphism in the interleukin-1 gene complex and spontaneous preterm delivery. Am J Obstet Gynecol. 2002;187(1):157–163.Google Scholar
  9. 9.
    Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol. 2010;28:321–342.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–837.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells Nat Med. 2007;13(7): 851–856.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517–1526.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–550.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Waugh J, Perry CM. Anakinra: a review of its use in the management of rheumatoid arthritis BioDrugs. 2005;19(3): 189–202.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Arntzen K, Kojllesdal A, Halgunset J, Vatten L, Austgulen R. TNF, IL-1, IL-6, IL-8 and soluble TNF receptors in relation to chorioamnionitis and premature labor. J Perinat Med. 1998;26(1):17–26.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Baud O, Emilie D, Pelletier E, et al. Amniotic fluid concentrations of interleukin-1beta, interleukin-6 and TNF-alpha in chorioamnionitis before 32 weeks of gestation: histological associations and neonatal outcome. Br J Obstet Gynaecol. 1999;106(1):72–77.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Baergen R, Benirschke K, Ulich T. Cytokine expression in the placenta. The role of interleukin 1 and interleukin 1 receptor antagonist expression in chorioamnionitis and parturition. Arch Pathol Lab Med. 1994;118(1):52–55.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sadowsky DW, Adams KM, Gravett MG, Witkin SS, Novy MJ. Preterm labor is induced by intraamniotic infusions of interleukin-1beta and tumor necrosis factor-alpha but not by interleukin-6 or interleukin-8 in a nonhuman primate model. Am J Obstet Gynecol. 2006;195(6):1578–1589.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sadowsky DW, Haluska GJ, Gravett MG, Witkin SS, Novy MJ. Indomethacin blocks interleukin 1beta-induced myometrial contractions in pregnant rhesus monkeys. Am J Obstet Gynecol. 2000;183(1):173–180.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Sadowsky DW, Novy MJ, Witkin SS, Gravett MG. Dexamethasone or interleukin-10 blocks interleukin-1beta-induced uterine contractions in pregnant rhesus monkeys. Am J Obstet Gynecol. 2003;188(1):252–263.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hirsch E, Filipovich Y, Mahendroo M. Signaling via the type I IL-1 and TNF receptors is necessary for bacterially induced preterm labor in a murine model Am J Obstet Gynecol. 2006;194(5): 1334–1340.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Willet KE, Kramer BW, Kallapur SG, et al. Intra-amniotic injection of IL-1 induces inflammation and maturation in fetal sheep lung. Am J Physiol Lung Cell Mol Physiol. 2002;282(3):L411–L420.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kallapur SG, Willet KE, Jobe AH, Ikegami M, Bachurski CJ. Intra-amniotic endotoxin: chorioamnionitis precedes lung maturation in preterm lambs. Am J Physiol Lung Cell Mol Physiol. 2001;280(3):L527–L536.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Kallapur SG, Nitsos I, Moss TJ, et al. IL-1 mediates pulmonary and systemic inflammatory responses to chorioamnionitis induced by lipopolysaccharide. Am J Respir Crit Care Med. 2009;179(10):955–961.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dinarello C. Interleukin-1. Cytokine Growth Factor Rev. 1997;8(4):253–265.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Jobe AH, Newnham JP, Willet KE, et al. Endotoxin-induced lung maturation in preterm lambs is not mediated by Cortisol. Am J Respir Crit Care Med. 2000;162(5):1656–1661.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kallapur SG, Moss TJ, Auten RL Jr. et al. IL-8 signaling does not mediate intra-amniotic LPS-induced inflammation and maturation in preterm fetal lamb lung. Am J Physiol Lung Cell Mol Physiol. 2009;297(3):L512–519.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Shah TA, Hillman NH, Nitsos I, et al. Pulmonary and systemic expression of monocyte chemotactic proteins in preterm sheep fetuses exposed to lipopolysaccharide-induced chorioamnionitis. Pediatr Res. 2010;68(3):210–215.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Cheah FC, Jobe AH, Moss TJ, Newnham JP, Kallapur SG. Oxidative stress in fetal lambs exposed to intra-amniotic endotoxin in a chorioamnionitis model Pediatr Res. 2008;63(3): 274–279.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Matsuda N, Hattori Y. Systemic inflammatory response syndrome (SIRS): molecular pathophysiology and gene therapy. J Pharmacol Sci. 2006;101(3):189–198.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Gotsch F, Romero R, Kusanovic JP, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. 2007;50(3):652–683.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Stoll BJ, Gordon T, Korones SB, et al. Early-onset sepsis in very low birth weight neonates: a report from the National Institute of Child Health and Human Development Neonatal Research Network. J Pediatr. 1996;129(1):72–80.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kramer BW, Kallapur SG, Moss TJ, et al. Modulation of fetal inflammatory response on exposure to lipopolysaccharide by chorioamnion, lung, or gut in sheep. Am J Obstet Gynecol. 2010;202(1):77 e71–e79.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kim YM, Romero R, Chaiworapongsa T, Espinoza J, Mor G, Kim CJ. Dermatitis as a component of the fetal inflammatory response syndrome is associated with activation of Toll-like receptors in epidermal keratinocytes. Histopathology. 2006;49(5):506–514.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Wolfs TG, Buurman WA, Zoer B, et al. Endotoxin induced chorioamnionitis prevents intestinal development during gestation in fetal sheep. PLoS One. 2009;4(6):e5837.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kemp MW, Saito M, Nitsos I, Jobe AH, Kallapur S, Newnham JP. Exposure to in utero lipopolysaccharide induces inflammation in the fetal ovine skin. Reprod Sci. 2011;18(1):88–98.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Li X, Qin J. Modulation of Toll-interleukin 1 receptor mediated signaling. J Mol Med. 2005;83(4):258–266.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Fidel PL Jr., Romero R, Cutright J, et al. Treatment with the interleukin-I receptor antagonist and soluble tumor necrosis factor receptor Fc fusion protein does not prevent endotoxin-induced preterm parturition in mice. J Soc Gynecol Investig. 1997;4(1):22–26.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Reznikov LL, Fantuzzi G, Selzman CH, et al. Utilization of endoscopic inoculation in a mouse model of intrauterine infection-induced preterm birth: role of interleukin 1beta. Biol Reprod. 1999;60(5):1231–1238.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ohlsson K, Bjork P, Bergenfeldt M, Hageman R, Thompson RC. Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature. 1990;348(6301):550–552.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Alexander HR, Doherty GM, Buresh CM, Venzon DJ, Norton JA. A recombinant human receptor antagonist to interleukin 1 improves survival after lethal endotoxemia in mice. J Exp Med. 1991;173(4):1029–1032.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Hirsch E, Muhle RA, Mussalli GM, Blanchard R. Bacterially induced preterm labor in the mouse does not require maternal interleukin-1 signaling Am J Obstet Gynecol. 2002;186(3): 523–530.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ikegami M, Moss TJ, Kallapur SG, et al. Minimal lung and systemic responses to TNF{alpha} in preterm sheep. Am J Physiol Lung Cell Mol Physiol. 2003;285(1):L121–L129.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Newnham JP, Kallapur SG, Kramer BW, et al. Betamethasone effects on chorioamnionitis induced by intra-amniotic endotoxin in sheep. Am J Obstet Gynecol. 2003;189(5):1458–1466.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Ito M, Nakashima A, Hidaka T, et al. A role for IL-17 in induction of an inflammation at the fetomaternal interface in preterm labour. J Reprod Immunol. 2010;84(1):75–85.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Buhimschi CS, Dulay AT, Abdel-Razeq S, et al. Fetal inflammatory response in women with proteomic biomarkers characteristic of intra-amniotic inflammation and preterm birth. BJOG. 2009;116(2):257–267.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Romero R, Espinoza J, Rogers WT, et al. Proteomic analysis of amniotic fluid to identify women with preterm labor and intra-amniotic inflammation/infection: the use of a novel computational method to analyze mass spectrometric profiling. J Matern Fetal Neonatal Med. 2008;21(6):367–388.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Yang Q, Whitin JC, Ling XB, et al. Plasma biomarkers in a mouse model of preterm labor Pediatr Res. 2009;66(1): 11–16.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Redline RW, Faye-Petersen O, Heller D, Qureshi F, Savell V, Vogler C. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns Pediatr Dev Pathol. 2003;6(5): 435–448.PubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2011

Authors and Affiliations

  • Clare A. Berry
    • 1
  • Ilias Nitsos
    • 2
  • Noah H. Hillman
    • 1
  • J. Jane Pillow
    • 2
  • Graeme R. Polglase
    • 2
  • Boris W. Kramer
    • 3
  • Matthew W. Kemp
    • 2
  • John P. Newnham
    • 2
  • Alan H. Jobe
    • 1
    • 2
  • Suhas G. Kallapur
    • 1
    • 2
    Email author
  1. 1.Division of Pulmonary Biology/NeonatologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.School of Women’s and Infants’ HealthThe University of Western AustraliaPerthAustralia
  3. 3.Department of Paediatrics, School of Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtThe Netherlands

Personalised recommendations