Aberrant Expression of Apoptosis-Related Molecules in Endometriosis: A Possible Mechanism Underlying the Pathogenesis of Endometriosis

  • 1 Accesses


Endometriosis, a disease affecting 3% to 10% of women of reproductive age, is characterized by the ectopic growth of endometrial tissue under the influence of estrogen. It is also becoming recognized as a condition in which ectopic endometrial cells exhibit abnormal proliferative and apoptotic regulation in response to appropriate stimuli. Apoptosis plays a critical role in maintaining tissue homeostasis and represents a normal function to eliminate excess or dysfunctional cells. Accumulated evidence suggests that, in healthy women, endometrial cells expelled during menstruation do not survive in ectopic locations because of programmed cell death, while decreased apoptosis may lead to the ectopic survival and implantation of these cells, resulting in the development of endometriosis. Both the inability of endometrial cells to transmit a “death” signal and the ability of endometrial cells to avoid cell death have been associated with increased expression of antiapoptotic factors and decreased expression of preapoptotic factors. Further investigations may elucidate the role of apoptosis-associated molecules in the pathogenesis of endometriosis. Medical treatment with apoptosis-inducing agents may be novel and promising therapeutic strategy for endometriosis.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 510

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Strathy JH, Molgaard CA, Coulam CB, Melton L. J. Endometriosis and infertility: a laparoscopic study of endometriosis among fertile and infertile women. Fertil Steril. 1982;38(6):667–672.

  2. 2.

    Garry R, Clayton R, Hawe J. The effect of endometriosis and its radical laparoscopic excision on quality of life indicators. Br J Obstet Gynecol. 2000;107(1):44–54.

  3. 3.

    Yanushpolsky EH, Best CL, Jackson KV, Clarke RN, Barbieri RL, Hornstein MD. Effects of endometriomas on oocyte quality, embryo quality, and pregnancy rates in in vitro fertilization cycles: a prospective, case-controlled study. J Assist Reprod Genet. 1998;15:193–197.

  4. 4.

    Vlahos NF, Kalampokas T, Fotiou S. Endometriosis and ovarian cancer: a review. Gynecol Endocrinol. 2010;26(3):213–219.

  5. 5.

    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–257.

  6. 6.

    Oberhammer F, Wilson JW, Dive C, et al. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 1993;12(9):3679–3684.

  7. 7.

    White E. Death-defying acts: a meeting review on apoptosis. Genes Dev. 1993;7(12A):2277–2284.

  8. 8.

    Osborne BA, Schwartz LM. Essential genes that regulate apoptosis. Trends Cell Biol. 1994;4:394–398.

  9. 9.

    Nagata S, Golstein P. The Fas death factor. Science. 1995;267:1449–1456.

  10. 10.

    Beg AA, Baltimore D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science. 1996;274:782–784.

  11. 11.

    Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-α-induced apoptosis by NF-κB. Science. 1996;274:787–789.

  12. 12.

    Sattler M, Liang H, Nettesheim D, et al. Structure of Bcl-xL-BaK peptide complex: recognition between regulators of apoptosis. Science. 1997;275(5302):983–986.

  13. 13.

    Dufournet C, Uzan C, Fauvet R, Cortez A, Siffroi J-P, Daria E. Expression of apoptosis-related proteins in peritoneal, ovarian and colorectal endometriosis. J Reprod Immunol. 2006;70(1–2):151–162.

  14. 14.

    Meresman GF, Vighi S, Buquet RA, Contreras-Ortiz O, Tesone M, Rumi LS. Apoptosis and expression of Bcl-2 and Bax in eutopic endometrium from women with endometriosis. Fertil Steril. 2000;74(4):760–766.

  15. 15.

    Beliard A, Noel A, Foidart J.-M. Reduction of apoptosis and proliferation in endometriosis. Fertil Steril. 2004;82(1):80–85.

  16. 16.

    Hopwood D, Levison DA. Atrophy and apoptosis in the cyclical human endometrium. J Pathol. 1976;119(3):159–166.

  17. 17.

    Kokawa K, Shikone T, Nakano R. Apoptosis in the human uterine endometrium during the menstrual cycle. J Clin Endocrinol Metab. 1996;81(11):4144–4147.

  18. 18.

    Shikone T, Yamato M, Kokawa K, Nishimori K, Nakano R. Apoptosis of human corpora lutea during cyclic luteal regression and early pregnancy. J Clin Endocrinol Metab. 1996;81(6):2376–2380.

  19. 19.

    Tabibzadeh S. The signals and molecular pathways involved in human menstruation, a unique process of tissue destruction and remodeling. Mol Hum Reprod. 1996;2:77–92.

  20. 20.

    Dmowski WP, Gebel H, Braun DP. Decreased apoptosis and sensitivity to macrophage mediated cytolysis of endometrial cells in endometriosis. Hum Reprod Update. 1998;4(5):696–701.

  21. 21.

    Gebel HM, Braun DP, Tambur A, Frame D, Rana N, Dmowski WP. Spontaneous apoptosis of endometrial tissue is impaired with endometriosis. Fertil Steril. 1998;69(6):1042–1047.

  22. 22.

    Imai A, Takagi A, Tamaya T. Gonadotropin-releasing hormone analog repairs reduced endometrial cell apoptosis in endometriosis in vitro. Am J Obstet Gynecol. 2000;182(5):1142–1146.

  23. 23.

    Dmowski WP, Ding J, Shen J, Rana N, Fernandez BB, Braun DP. Apoptosis in endometrial glandular and stromal cells in women with and without endometriosis. Hum Reprod. 2001;16(9):1802–1808.

  24. 24.

    Braun DP, Ding J, Shen J, Rena N, Fernandez BB, Dmowski WP. Relationship between apoptosis and the number of macrophages in eutopic endometrium from women with and without endometriosis. Fertil Steril. 2002;78(4):830–835.

  25. 25.

    Johnson MC, Torres M, Alves A, et al. Augmented cell survival in eutopic endometrium from women with endometriosis: expression of c-myc, TGF-beta1 and bax genes. Reprod Biol Endocrinol.; 3:45.

  26. 26.

    Szymanowski K. Apoptosis pattern in human endometrium in women with pelvic endometriosis. Eur J Obstet Gynecol Reprod Biol. 2007;132(1):107–110.

  27. 27.

    Wingfield M, Macpherson A, Healy DL, Rogers PAW. Cell proliferation is increased in the endometrium of women with endometriosis. Fertil Steril. 1995;64(2):340–346.

  28. 28.

    Harada M, Suganuma N, Furuhashi M, Nagasaka T, Nakashima N, Kikkawa F, Tomoda Y, Furui K. Detection of apoptosis in human endometriotic tissues. Mol Hum Reprod. 1996;2(5):307–315.

  29. 29.

    Selam B, Arici A. Implantation defect in endometriosis: endometrium or peritoneal fluid. J Reprod Fertil Suppl. 2000;55:121–128.

  30. 30.

    Harada T, Kaponis A, Iwabe T, et al. Apoptosis in human endometrium and endometriosis. Hum Reprod Update. 2004;10(1):29–38.

  31. 31.

    Nishida M, Nasu K, Ueda T, Fukuda J, Takai N, Miyakawa I. Endometriotic cells are resistant to interferon-γ-induced cell growth inhibition and apoptosis: a possible mechanism involved in the pathogenesis of endometriosis. Mol Hum Reprod. 2005;11(1):29–34.

  32. 32.

    Izawa M, Harada T, Deura I, Taniguchi F, Iwabe T, Terakawa N. Drug-induced apoptosis was markedly attenuated in endometriotic stromal cells. Hum Reprod. 2006;21(3):600–604.

  33. 33.

    Klemmt PAB, Carver JG, Kennedy SH, Koninckx PR, Mardon HJ. Stromal cells from endometriotic lesions and endometrium from women with endometriosis have reduced decidualization capacity. Fertil Steril. 2006;85(3):564–572.

  34. 34.

    Peiro G, Diebold J, Buretton GB, Kimmig R, Lohrs U. Cellular apoptosis susceptibility gene expression in endometrial carcinoma: correlation with Bcl-2, Bax, and Caspase-3 expression and outcome. Int J Gynecol Pathol. 2001;20(4):359–367.

  35. 35.

    Jones RK, Searle RF, Bulmer JN. Apoptosis and bcl-2 expression in normal human endometrium, endometriosis and adenomyosis. Hum Reprod. 1998;13(12):3496–3502.

  36. 36.

    Suganuma N, Harada M, Furuhashi M, Nawa A, Kikkawa F. Apoptosis in human and endometriotic tissues. Horm Res. 1997;48(suppl 3):42–47.

  37. 37.

    Arimoto T, Katagiri T, Oda K, et al. Genome-wide cDNA microarray analysis of gene-expression profiles involved in ovarian endometriosis. Int J Oncol. 2003;22(3):551–560.

  38. 38.

    Nezhat F, Cohen C, Rahaman J, Gretz H, Cole P, Kalir T. Comparative immunohistochemical studies of bcl-2 and p53 proteins in benign and malignant ovarian endometriotic cysts. Cancer. 2002;94(11):2935–2940.

  39. 39.

    Bontis JN, Vavilis DT. Etiopathology of endometriosis. Ann N Y Acad Sci. 1997;816:305–309.

  40. 40.

    Korsmeyer SJ. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood. 1992;80(4):879–886.

  41. 41.

    Reed JC. Double identity for proteins of the Bcl-2 family. Nature. 1997;387(6635):773–776.

  42. 42.

    Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vitro with a conserved homolog, Bax, the accelerated programmed cell death. Cell. 1993;74(4):609–619.

  43. 43.

    Chao DT, Korsmeyer SJ. Bcl-2 family: regulators of cell death. Annu Rev Immunol. 1998;16:395–419.

  44. 44.

    Jones RK, Bulmer JN, Searle RF. Phenotypic and functional studies of leukocytes in human endometrium and endometriosis. Hum Reprod Update. 1998;4(5):702–709.

  45. 45.

    McLaren J, Prentice A, Charnock-Jones DS, Sharkey AM, Smith SK. Immunolocalization of the apoptosis regulating proteins Bcl-2 and Bax in human endometrium and isolated peritoneal fluid macrophages in endometriosis. Hum Reprod. 1997;12(1):146–152.

  46. 46.

    Nezhat FR, Kalir T. Comparative immunohistochemical studies of endometriosis lesions and endometriotic cysts. Fertil Steril. 2002;78(4):820–824.

  47. 47.

    Jones RK, Bulmer JN, Searle RF. Immunohistochemical characterization of proliferation, oestrogen and progesterone receptor expression in endometriosis: comparison of eutopic and ectopic endometrium with normal cycling endometrium. Hum Reprod. 1995;10(12):3272–3279.

  48. 48.

    Fujishita A, Chavez RO, Nakane PK, et al. Expression of estrogen and progesterone receptors in endometrium and peritoneal endometriosis: an immunohistochemical and in situ hybridization study. Fertil Steril. 1997;67(5):856–864.

  49. 49.

    Boise LH, Gonzalez-Garcia M, Postema CE, et al. Bcl-x, a bcl-2 related gene that functions as dominant regulator of apoptotic cell death. Cell. 1993;74(4):597–608.

  50. 50.

    Zubor P, Hatok J, Galo S, Dokus K, Klobusiakova D, Danko J, Racay P. Anti-apoptotic and pro-apoptotic gene expression evaluated from eutopic endometrium in the proliferative phase of the menstrual cycle among women with endometriosis and healthy controls. Eur J Obstet Gynecol Reprod Biol. 2009;145(2):172–176.

  51. 51.

    Braun DP, Ding J, Shaheen F, Willey JC, Rana N, Dmowski WP. Quantitative expression of apoptosis-regulating genes in endometrium from women with and without endometriosis. Fertil Steril. 2007;87(2):263–268.

  52. 52.

    Goumenou AG, Matalliotakis IM, Tzardi M, Fragouli YG, Mahutte NG, Arici A. Apoptosis and differential expression of apoptosis-related proteins in endometriotic glandular and stromal cells. J Soc Gynecol Investig. 2004;11(5):318–322.

  53. 53.

    Fauvet R, Poncelet C, Hugol D, Lavaur A, Feldmann G, Darai E. Expression of apoptosis-related proteins in endometriomas and benign and malignant ovarian tumours. Virchows Arch. 2003;443(1):38–43.

  54. 54.

    Goumenou A, Panayiotides I, Matalliotakis I, Vlachonikolis I, Tzardi M, Koumantakis E. Bcl-2 and Bax expression in human endometriotic and adenomyotic tissues. Eur J Obstet Gynecol Reprod Biol. 2001;99(2):256–260.

  55. 55.

    Downward J. How BAD phosphorylation is good for survival. Nat Cell Biol. 1999;1(2):E33–E35.

  56. 56.

    Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995;80(2):285–291.

  57. 57.

    Zhou XM, Liu Y, Payne G, Lutz RJ, Chittenden T. Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. J Biol Chem. 2000;275(32):25046–25051.

  58. 58.

    Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of tumor necrosis factor family. Cell. 1993;75(6):1169–1178.

  59. 59.

    Nagata S. Fas and Fas ligand: a death factor and its receptor. Adv Immunol. 1994;57:129–144.

  60. 60.

    Selam B, Kayisli UA, Garcia-Velasco JA, Arici A. Extracellular matrix-dependent regulation of Fas ligand expression in human endometrial stromal cells. Biol Reprod. 2002;66(1):1–5.

  61. 61.

    Kayagaki N, Kawasaki A, Ebata T, et al. Metalloproteinase-mediated release of human Fas ligand. J Exp Med. 1995;182(6):1777–1783.

  62. 62.

    Powell WC, Fingleton B, Wilson CL, Boothby M, Matrisian L. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol. 1999;9(24):1441–1447.

  63. 63.

    Ueno T, Toi M, Tominaga T. Circulating soluble Fas concentration in breast cancer patients. Clin Cancer Res. 1999;5(11):3529–3533.

  64. 64.

    Onalan G, Selam B, Onalan R, Ceyhan T, Cincik M, Pabuccu R. Serum and follicular fluid levels of soluble Fas and soluble Fas ligand in IVS cycles. Eur J Obstet Gynecol Reprod Biol. 2006;125(1):85–91.

  65. 65.

    Garcia-Velasco JA, Mulayim N, Kayisli UA, Arici A. Elevated soluble Fas ligand levels may suggest a role for apoptosis in women with endometriosis. Fertil Steril. 2002;78(4):855–859.

  66. 66.

    Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med. 1996;334(26):1717–1725.

  67. 67.

    Iwabe T, Harada T, Tsudo T, et al. Tumor necrosis factor-a promotes proliferation of endometriotic stromal cells by inducing interleukin-8 gene and protein expression. J Clin Endocrinol Metab. 2000;85:824–829.

  68. 68.

    Heller RA, Song K, Fan N, Chang DJ. The p70 tumor necrosis factor receptor mediates cytotoxicity. Cell. 1992;70(1):47–56.

  69. 69.

    Ininns EK, Gatanaga M, Cappuccini F, et al. Growth of the endometrial adenocarcinoma cell line AN3 CA is modulated by tumor necrosis factor and its receptor is up-regulated by estrogen in vitro. Endocrinology. 1992;130(4):1852–1856.

  70. 70.

    Higuchi M, Aggarwal BB. p80 form of the human tumor necrosis factor receptor is involved in DNA fragmentation. FEBS Lett. 1993;331(3):252–255.

  71. 71.

    Tabibzadeh S, Zupi E, Babaknia A, Liu R, Marconi D, Romanini C. Site and menstrual cycle-dependent expression of proteins of the tumor necrosis factor (TNF) receptor family, and BCL-2 oncoprotein and phase-specific production of TNF-alpha in human endometrium. Hum Reprod. 1995;10(2):277–286.

  72. 72.

    Kharfi A, Labelle Y, Mailloux J, Akoum A. Deficient expression of tumor necrosis factor receptor type 2 in the endometrium of women with endometriosis. Am J Reprod Immunol. 2003;50(1):33–40.

  73. 73.

    Chegini N, Dou Q, Williams RS. An inverse relation between the expression of tumor necrosis factor alpha (TNF-alpha) and TNF-alpha receptor in human endometrium. Am J Reprod Immunol. 1999;42(5):297–302.

  74. 74.

    Halme J, Becker S, Hammond MG, Raj MH, Raj S. Increased activation of pelvic macrophages in fertile women with mild endometriosis. Am J Obstet Gynecol. 1983;145(3):333–337.

  75. 75.

    Mori H, Sawairi M, Nakagawa M, Itoh N, Wada K, Tamaya T. Peritoneal fluid interleukin-1 beta and tumor necrosis factor in patients with benign gynecologic disease. Am J Reprod Immunol. 1991;26(2):62–67.

  76. 76.

    Harada T, Yoshioka H, Yoshida S, et al. Increased interleukin-6 levels in peritoneal fluid of infertile patients with active endometriosis. Am J Obstet Gynecol. 1997;176(3):593–597.

  77. 77.

    Nishida M, Nasu K, Fukuda J, Kawano Y, Narahara H, Miyakawa I. Down-regulation of interleukin-1 receptor type 1 expression causes the dysregulated expression of CXC chemokines in endometriotic stromal cells: a possible mechanism for the altered immunological functions in endometriosis. J Clin Endocrinol Metab. 2004;89(10):5094–5100.

  78. 78.

    Harada M, Osuga Y, Hirata T, et al. Concentration of osteoprotegerin (OPG) in peritoneal fluid is increased in women with endometriosis. Hum Reprod. 2004;19(10):2188–2191.

  79. 79.

    Bersinger NA, von Roten S, Wunder DM, Raio L, Dreher E, Mueller MD. PAPP-A and osteoprotegerin, together with interleukin-8 and RANTES, are elevated in the peritoneal fluid of women with endometriosis. Am J Obstet Gynecol. 2006;195(1):103–108.

  80. 80.

    Hasegawa A, Osuga Y, Hirota Y, et al. Tunicamycin enhances the apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand in endometriotic stromal cells. Hum Reprod. 2009;24(2):408–414.

  81. 81.

    Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3(8):917–921.

  82. 82.

    Dubrez-Daloz L, Dupoux A, Cartier J. IAPs: more than just inhibitors of apoptosis proteins. Cell Cycle. 2008;7(8):1036–1046.

  83. 83.

    Devereaux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 1997;388(6639):300–304.

  84. 84.

    Ueda M, Yamashita Y, Takehara M, et al. Survivin gene expression in endometriosis. J Clin Endocrinol Metab. 2002;87(7):3452–3459.

  85. 85.

    Watanabe A, Taniguchi F, Izawa M, et al. The role of survivin in the resistance of endometriotic stromal cells to drug-induced apoptosis. Hum Reprod. 2009;24(12):3172–3179.

  86. 86.

    Fujino K, Ueda M, Takehara M, et al. Transcriptional expression of survivin and its splice variants in endometriosis. Mol Hum Reprod. 2006;12(6):383–388.

  87. 87.

    Miyamoto A, Taniguchi F, Tagashira Y, Watanabe A, Harada T, Terakawa N. TNFα gene silencing reduced lipopolysaccharide-promoted proliferation of endometriotic stromal cells. Am J Reprod Immunol. 2009;61(4):277–285.

  88. 88.

    Cerretti DP, Kozlosky CJ, Mosley B, et al. Molecular cloning of the interleukin-1 beta converting enzyme. Science. 1992;256(5053):97–100.

  89. 89.

    Yasuhara N. Evidence against a functional site for Bcl-2 downstream of caspase cascade in preventing apoptosis. Oncogene. 1997;15(16):1921–1928.

  90. 90.

    Toh SY, Wang X, Li P. Identification of the nuclear factor HMG2 as an activator for DFF nuclease activity. Biochem Biophys Res Commun. 1998;250(3):598–601.

  91. 91.

    Widlak P, Lanuszewska J, Cary RB, Garrard WT. Subunit structures and stoichiometries of human DNA fragmentation factor proteins before and after induction of apoptosis. J Biol Chem. 2003;278(29):26915–26922.

  92. 92.

    Banas T, Skotniczny K, Basta A. DFF45 expression in ovarian endometriomas. Eur J Obstet Gynecol Reprod Biol. 2009;146(1):87–91.

  93. 93.

    Lane DP. Cancer. P53, guardian of the genome. Nature. 1992;358(6381):15–16.

  94. 94.

    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323–331.

  95. 95.

    Schneider J, Jimenez E, Rodriguez F, del Tanago JG. C-myc, c-erb-B2, nm23 and p53 expression in human endometriosis. Oncol Rep. 1998;5(1):49–52.

  96. 96.

    Nakayama K, Toki T, Zhai YL, et al. Demonstration of focal p53 expression without genetic alterations in endometriotic lesions. Int J Gynecol Pathol. 2001;20(3):227–231.

  97. 97.

    Chang CC, Hsieh YY, Tsai FJ, Tsai CH, Tsai HD, Lin CC. The proline form of p53 codon 72 polymorphism is associated with endometriosis. Fertil Steril. 2002;77(1):43–45.

  98. 98.

    Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature. 1995;377(6549):552–557.

  99. 99.

    Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 1995;82(4):359–368.

  100. 100.

    Attardi LD, Lowe SW, Brugarolas J, Jacks T. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 1996;15(14):3693–3701.

  101. 101.

    Albaro JO, Maria KM, John MS. Mysterious liaison: the relationship between c-Myc and the cell cycle. Oncogene. 1999;18:2934–2941.

  102. 102.

    Adachi S, Obaya AJ, Han ZY, Desimone NR, Wyche JH, Sedivy JM. c-Myc is necessary for DNA damage-induced apoptosis in the G2 phase of the cell cycle. Mol Cell Biol. 2001;21(15):4929–4937.

  103. 103.

    Miyazaki T, Liu ZJ, Kawahara A, Minami Y, Yamada K. Three distinct IL-2 signaling pathways mediated by bcl-2, c-myc, and lck cooperate in hematopoietic cell proliferation. Cell. 1995;81(2):223–231.

  104. 104.

    Smith AG, Popov N, Imreh M, Axelson H, Henriksson M. Expression and DNA-binding activity of MYCN/Max and Mnt/Max during induced differentiation of human neuroblastoma cells. J Cell Biochem. 2004;92(6):1282–1295.

  105. 105.

    Barnes PJ, Karin M. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336(15):1066–1071.

  106. 106.

    Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr. Sledge GW Jr. Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth. Mol Cell Biol. 1997;17(7):3629–3639.

  107. 107.

    Palayoor ST, Youmell MY, Calderwood SK, Cleman CN, Price BD. Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen. Oncogene. 1999;18(51):7389–7394.

  108. 108.

    Wieser F, Vigne J-L, Ryan I, Hornung D, Djalali S, Taylor RN. Sulindac suppresses nuclear factor-κB activation and RANTES gene and protein expression in endometrial stromal cells from women with endometriosis. J Clin Endocrinol Metab. 2005;90(12):6441–6447.

  109. 109.

    Sakamoto Y, Harada T, Horie S, et al. Tumor necrosis factor-a-induced interleukin-8 (IL-8) expression in endometriotic stromal cells, probably through nuclear factor-κB activation: gonadotropin-releasing hormone agonist treatment reduced IL-8 expression. J Clin Endocrinol Metab. 2003;88(2):730–735.

  110. 110.

    Guo S-W. Nuclear factor-κB (NF-κB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large? Gynecol Obstet Invest. 2007;63(2):71–97.

  111. 111.

    Horie S, Harada T, Mitsunari M, Taniguchi F, Iwabe T, Terakawa N. Progesterone and progestational compounds attenuate tumor necrosis factor alpha-induced interleukin-8 production via nuclear factor kappaB inactivation in endometriotic stromal cells. Fertil Steril. 2005;83(5):1530–1535.

  112. 112.

    Iba Y, Harada T, Horie S, Deura I, Iwabe T, Terakawa N. Lipopolysaccharide-promoted proliferation of endometriotic stromal cells via induction of tumor necrosis factor a and interleukin-8 expression. Fertil Steril. 2004;82(suppl 3):1036–1042.

  113. 113.

    Nasu K, Nishida M, Ueda T, Yuge A, Takai N, Narahara H. Application of the selective nuclear factor-κB inhibitor, BAY 11-7085, for the treatment of endometriosis: an in vitro study. Am J Physiol Endocrinol Metab. 2007;293:E16–E23.

  114. 114.

    Gonzalez-Ramos R, Van Langendonckt A, Defrere S, et al. Agents blocking the nuclear factor-κB pathway are effective inhibitors of endometriosis in an in vivo experimental model. Gynecol Obstet Invest. 2008;65(3):174–186.

  115. 115.

    Pearson G, Robinson F, Beers GT, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22(2):153–183.

  116. 116.

    Yoshino O, Osuga Y, Hirota Y, et al. Possible pathophysiological roles of mitogen-activated protein kinases (MAPKs) in endometriosis. Am J Reprod Immunol. 2004;52(5):306–311.

  117. 117.

    Murk W, Atabekoglu CS, Cakmak H, et al. Extracellularly signal-regulated kinase activity in the human endometrium: possible roles in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 2008;93(9):3532–3540.

  118. 118.

    Zingg D, Riesterer O, Fabbro D, Glanzmann C, Bodis S, Pruschy M. Differential activation of the phosphatidylinositol 30-kinase/Akt survival pathway by ionizing radiation in tumor and primary endothelial cells. Cancer Res. 2004;64:5398–5406.

  119. 119.

    Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA. 2001;98(20):10983–10985.

  120. 120.

    Khor TO, Gul YA, Ithnin H, Seow HF. Positive correlation between overexpression of phospho-BAD with phosphorylated Akt at serine 473 but not threonine 308 in colorectal carcinoma. Cancer Lett. 2004;210(2):139–150.

  121. 121.

    Skurk C, Maatz H, Kim HS, et al. The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem. 2004;279(2):1513–1525.

  122. 122.

    Whang YE, Yuan XJ, Liu Y, Majumder S, Lewis TD. Regulation of sensitivity to TRAIL by the PTEN tumor suppressor. Vitam Horm. 2004;67:409–426.

  123. 123.

    Cinar O, Seval Y, Uz YH, et al. Differential regulation of Akt phosphorylation in Endometriosis. Reprod BioMed Online. 2009;19:864–871.

  124. 124.

    Koichi S, Kawabata Y, Sorimachi H. Structure, activation and biology of Caplain. Diabetes Care. 2004;53:s12–s8.

  125. 125.

    Penna I, Du H, Ferriani R, Taylor HS. Calpain5 expression is decreased in endometriosis and regulated by HOXA10 in human endometrial cells. Mol Hum Reprod. 2008;14(10):613–618.

  126. 126.

    Schlesinger DH, Goldstein G, Niall HD. The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry. 1975;14(10):2214–2218.

  127. 127.

    Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82(2):373–428.

  128. 128.

    Ilad RS, Fleming SD, Bebington CR, Murphy CR. Ubiquitin is associated with the survival of ectopic stromal cells in endometriosis. Reprod Biol Endocrinol. 2004;2:69.

  129. 129.

    Karck U, Reister F, Schafer W, Zahradnik HP, Breckwoldt M. PGE2 and PGF2 release by human peritoneal macrophages in endometriosis. Prostaglandins. 1996;51(1):49–60.

  130. 130.

    Ebert AD, Bartley J, David M. Aromatase inhibitors and cyclooxygenase-2 (COX-2) inhibitors in endometriosis: new questions-old answers? Eur J Obstet Gynecol Reprod Biol. 2005;122(2):144–150.

  131. 131.

    Ota H, Igarashi S, Sasaki M, Tanaka T. Distribution of cyclooxygenase-2 in eutopic and ectopic endometrium in endometriosis and adenomyosis. Hum Reprod. 2001;16(3):561–566.

  132. 132.

    Chishima F, Hayakawa S, Sugita K, et al. Increased expression of cyclooxygenase-2 in local lesions of endometriosis patients. Am J Reprod Immunol. 2002;48(1):50–56.

  133. 133.

    Banu SK, Lee J, Speights VO Jr. Starzinski-Powitz A, Arosh JA. Cyclooxygenase-2 regulates survival, migration, and invasion of human endometriotic cells through multiple mechanisms. Endocrinology. 2008;149(3):1180–1189.

  134. 134.

    Laschke MW, Elitzsch A, Scheuer C, Vollmar B, Menger MD. Selective cyclo-oxygenase-2 inhibition induces regression of autologous endometrial grafts by down-regulation of vascular endothelial growth factor-mediated angiogenesis and stimulation of caspase-3-dependent apoptosis. Fertil Steril. 2007;87(1):163–171.

  135. 135.

    Clevers H. Colon cancer: understanding how NSAIDs work. N Engl J Med. 2006;354(7):761–763.

  136. 136.

    Cha YI, DuBois RN. NSAIDs and cancer prevention: targets downstream of COX-2. Annu Rev Med. 2007;58:239–252.

  137. 137.

    Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev. 1999;79(4):1193–1226.

  138. 138.

    Banu SK, Lee J, Starzinski-Powitz A, Arosh JA. Gene expression profiles and functional characterization of human immortalized endometriotic epithelial and stromal cells. Fertil Steril. 2008;90(4):972–987.

  139. 139.

    Banu SK, Lee J, Speights VO Jr. Starzinski-Powitz A, Arosh JA. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 induces apoptosis of human endometriotic cells through suppression of ERK1/2, AKT, NFκB, and β-catenin pathways and activation of intrinsic apoptotic mechanisms. Mol Endocrinol. 2009;23(8):1291–1305.

  140. 140.

    Practice Committee of the American Society for Reproductive Medicine. Endometriosis and infertility. Fertil Steril. 2004;81:1441–1446.

  141. 141.

    Bergqvist A, Bergh T, Hogstrom L, Mattsson S, Nordenskjold F, Rasmussen C. Effects of triptorelin versus placebo on the symptoms of endometriosis. Fertil Steril. 1998;69(4):702–708.

  142. 142.

    Imai A, Ohno T, Iida K, Fuseya T, Frui T, Tamaya T. Gonadotropin-releasing hormone receptor in gynecologic tumors. Frequent expression in adenocarcinoma histologic types. Cancer. 1994;74(9):2555–2561.

  143. 143.

    Chatzaki E, Bax CM, Eidne KA, Anderson L, Grudzinskas JG, Gallagher CJ. The expression of gonadotropin-releasing hormone and its receptor in endometrial cancer, and its relevance as an autocrine growth factor. Cancer Res. 1996;56(9):2059–2065.

  144. 144.

    Janovick J, Conn P. Gonadotropin releasing hormone agonist provokes homologous receptor microaggregation: an early event in seven-transmembrane receptor mediated signaling. Endocrinology. 1996;137(8):3602–3605.

  145. 145.

    Meresman GF, Bilotas M, Buquet RA, Baranao RI, Sueldo C, Tesone M. Gonadotropin-releasing hormone agonist induces apoptosis and reduces cell proliferation in eutopic endometrial cultures from women with endometriosis. Fertil Steril. 2003;80(suppl 2):702–707.

  146. 146.

    Bilotas M, Baranao RI, Buquet R, Sueldo C, Tesone M, Meresman G. Effect of GnRH analogues on apoptosis and expression of Bcl-2, Bax, Fas and FasL proteins in endometrial epithelial cell cultures from patients with endometriosis and controls. Hum Reprod. 2007;22(3):644–653.

  147. 147.

    Khan KN, Kitajima M, Hiraki K, et al. Changes in tissue inflammation, angiogenesis and apoptosis in endometriosis, adenomyosis and uterine myoma after GnRH agonist therapy. Hum Reprod. 2010;25(3):642–653.

  148. 148.

    Gomes MKO, Rosa-e-Silva JC, Garcia SB, et al. Effects of the levonorgestrel-releasing intrauterine system on cell proliferation, Fas expression and steroid receptors in endometriosis lesions and normal endometrium. Hum Reprod. 2009;24(11):2736–2745.

  149. 149.

    Kalkhoven E, Wissink S, van der Saag PT, van der Burg B. Negative interaction between the RelA(p65) subunit of NF-κB and the progesterone receptor. J Biol Chem. 1996;271(11):6217–6224.

  150. 150.

    McKay LI, Cidlowski JA. Molecular control of immune/inflammatory responses: interactions between nuclear factor-κB and steroid receptor-signaling pathways. Endocr Rev. 1999;20(4):435–459.

  151. 151.

    Meresman GF, Auge L, Baranao RI, Lombardi E, Tesone M, Sueldo C. Oral contraceptives treatment suppresses proliferation and enhances apoptosis of eutopic endometrial tissue from patients with endometriosis. Fertil Steril. 2002;77(6):1141–1147.

  152. 152.

    Surrey ES, Halme J. Direct effects of medroxyprogesterone acetate, danazol, and leuprolide acetate on endometrial stromal cell proliferation in vitro. Fertil Steril. 1992;58(2):273–278.

  153. 153.

    Braun DP, Gebel H, Dmowski WP. Effect of danazol in vitro and in vivo on monocyte-mediated enhancement of endometrial cell proliferation in women with endometriosis. Fertil Steril. 1994;62(1):89–95.

  154. 154.

    Bulun SE, Zaitoun KM, Takayama K, Sasano H. Estrogen biosynthesis in endometriosis: molecular basis and clinical relevance. J Mol Endocrinol. 2000;25(1):35–42.

  155. 155.

    Bulun SE, Fang Z, Imir G, et al. Aromatase and endometriosis. Semin Reprod Med. 2004;22(1):45–50.

  156. 156.

    Zeitoun KM, Bulun SE. Aromatase: a key molecule in the pathophysiology of endometriosis and a therapeutic target. Fertil Steril. 1999;72(6):961–969.

  157. 157.

    Meresman GF, Bilotas M, Abello V, Buquet R, Tesone M, Sueldo C. Effects of aromatase inhibitors on proliferation and apoptosis in eutopic endometrial cell cultures from patients with endometriosis. Fertil Steril. 2005;84(2):459–463.

  158. 158.

    Bilotas M, Meresman G, Stella I, Sueldo C, Baranao RI. Effect of aromatase inhibitors on ectopic endometrial growth and peritoneal environment in a mouse model of endometriosis. Fertil Steril. 2010;93(8):2513–2518.

  159. 159.

    Lebovic DI, Mueller MD, Taylor RN. Immunobiology of endometriosis. Fertil Steril. 2001;75(1):1–10.

  160. 160.

    Nasu K, Nishida M, Ueda T, Takai N, Bing S, Miyakawa I. Bufalin induces apoptosis and G0/G1 cell cycle arrest of endometriotic stromal cells: a novel therapeutic approach for the treatment of endometriosis. Mol Hum Reprod. 2005;11:817–823.

  161. 161.

    Nishida M, Nasu K, Ueda T, Yuge A, Takai N, Narahara H. Beta-hydroxyisovalerylshikonin induces apoptosis and the G0/G1 cell cycle arrest of endometriotic stromal cells: a preliminary in vitro study. Mol Hum Reprod. 2006;21(11):2850–2856.

Download references

Author information

Correspondence to Kaei Nasu MD, PhD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nasu, K., Nishida, M., Kawano, Y. et al. Aberrant Expression of Apoptosis-Related Molecules in Endometriosis: A Possible Mechanism Underlying the Pathogenesis of Endometriosis. Reprod. Sci. 18, 206–218 (2011).

Download citation


  • endometriosis
  • apoptosis
  • proliferation
  • pathogenesis
  • medical treatment