Advertisement

Reproductive Sciences

, Volume 18, Issue 4, pp 359–373 | Cite as

Na+,K+-ATPase Activity and Subunit Protein Expression: Ontogeny and Effects of Exogenous and Endogenous Steroids on the Cerebral Cortex and Renal Cortex of Sheep

  • Chang-Ryul Kim
  • Grazyna B. Sadowska
  • Stephanie A. Newton
  • Maricruz Merino
  • Katherine H. Petersson
  • James F. Padbury
  • Barbara S. StonestreetEmail author
Original Articles

Abstract

We examined the effects of development, exogenous, and endogenous glucocorticoids on Na+,K+-ATPase activity and subunit protein expression in ovine cerebral cortices and renal cortices. Ewes at 60%, 80%, and 90% gestation, newborns, and adults received 4 dexamethasone or placebo injections. Cerebral cortex Na+,K+-ATPase activity was higher (P <.05) in placebo-treated newborns than fetuses of placebo-treated ewes and adults, α1-expression was higher at 90% gestation than the other ages; α2-expression was higher in newborns than fetuses; α3-expression was higher in newborns than 60% gestation; β1-expression was higher in newborns than the other ages, and β2-expression higher at 60% than 80% and 90% gestation, and in adults. Renal cortex Na+,K+-ATPase activity was higher in placebo-treated adults and newborns than fetuses. Cerebral cortex Na+,K+-ATPase activity was higher in dexamethasone- than placebo-treated adults, and α1-expression higher in fetuses of dexamethasone- than placebo-treated ewes at 60% and 80% gestation. Renal cortex Na+,K+-ATPase activity and α1-expression were higher in fetuses of dexamethasone-than placebo-treated ewes at each gestational age, and β1-expression was higher in fetuses of dexamethasone-than placebo-treated ewes at 90% gestation and in dexamethasone-than placebo-treated adults. Cerebral cortex Na+,K+-ATPase activity, α1-expression, β1-expression, and renal cortex α1-expression correlated directly with increases in fetal cortisol. In conclusion, Na+,K+-ATPase activity and subunit expression exhibit specific developmental patterns in brain and kidney; exogenous glucocorticoids regulate activity and subunit expression in brain and kidney at some ages; endogenous increases in fetal cortisol regulate cerebral Na+,K+-ATPase, but exogenous glucocorticoids have a greater effect on renal than cerebral Na+,K+-ATPase.

Keywords

brain kidney glucocorticoids Na+,K+ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skou JC. The Na,K-pump. Methods Enzymol. 1988;156:1–25.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Mobasheri A, Avila J, Cozar-Castellano I, et al. Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep. 2000;20 (2): 51–91.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Jahnukainen T, Chen M, Berg U, et al. Antenatal glucocorticoids and renal function after birth. Semin Neonatol. 2001;6 (4): 351–355.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol. 2000;279 (3): C541–C566.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chow DC, Forte JG. Functional significance of the beta-subunit for heterodimeric P-type ATPases. J Exp Biol. 1995;198 (pt 1): 1–17.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol. 1998;275 (5 pt 2): F633–F650.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Lopez LB, Quintas LE, Noel F. Influence of development on Na(+)/K(+)-ATPase expression: isoform- and tissue-dependency. Comp Biochem Physiol A Mol Integr Physiol. 2002;131 (2): 323–333.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Horisberger JD, Lemas V, Kraehenbuhl JP, et al. Structure-function relationship of Na,K-ATPase. Annu Rev Physiol. 1991;53 (6): 565–584.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hieber V, Siegel GJ, Fink DJ, et al. Differential distribution of (Na, K)-ATPase alpha isoforms in the central nervous system. Cell Mol Neurobiol. 1991;11 (2): 253–262.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Shyjan AW, Levenson R. Antisera specific for the alpha 1, alpha 2, alpha 3, and beta subunits of the Na,K-ATPase: differential expression of alpha and beta subunits in rat tissue membranes. Biochemistry. 1989;28 (11): 4531–4535.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Watts AG, Sanchez-Watts G, Emanuel JR, et al. Cell-specific expression of mRNAs encoding Na+,K(+)-ATPase alpha- and beta-subunit isoforms within the rat central nervous system. Proc Natl Acad Sci U S A. 1991;88 (16): 7425–7429.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Martin-Vasallo P, Wetzel RK, Garcia-Segura LM, et al. Oligodendrocytes in brain and optic nerve express the beta3 subunit isoform of Na,K-ATPase. Glia. 2000;31 (3): 206–218.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Herrera VL, Cova T, Sassoon D, et al. Developmental cell-specific regulation of Na(+)-K(+)-ATPase alpha 1-, alpha 2-, and alpha 3-isoform gene expression. Am J Physiol. 1994;266 (5 pt 1): C1301–C1312.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Orlowski J, Lingrel JB. Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic alpha isoform and beta subunit mRNAs. J Biol Chem. 1988;263 (21): 10436–10442.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Jaisser F, Jaunin P, Geering K, et al. Modulation of the Na, K-pump function by beta subunit isoforms. J Gen Physiol. 1994;103 (4): 605–623.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Berry LM, Polk DH, Ikegami M, et al. Preterm newborn lamb renal and cardiovascular responses after fetal or maternal antenatal betamethasone. Am J Physiol. 1997;272 (6 pt 2): R1972–R1979.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Stonestreet BS, Hansen NB, Laptook AR, et al. Glucocorticoid accelerates renal functional maturation in fetal lambs. Early Hum Dev. 1983;8 (3–4): 331–341.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Jobe AH. Animal models of antenatal corticosteroids: clinical implications. Clin Obstet Gynecol. 2003;46 (1): 174–189.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH consensus development panel on the effect of corticosteroids for fetal maturation on perinatal outcomes.Jama. 1995;273 (5): 413–418.CrossRefGoogle Scholar
  20. 20.
    Stonestreet BS, Sadowska GB, McKnight AJ, et al. Exogenous and endogenous corticosteroids modulate blood-brain barrier development in the ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2000;279 (2): R468–R477.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Sysyn GD, Petersson KH, Patlak CS, et al. Effects of postnatal dexamethasone on blood-brain barrier permeability and brain water content in newborn lambs. Am J Physiol Regul Integr Comp Physiol. 2001;280 (2): R547–R553.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ballard PL, Ballard RA. Scientific basis and therapeutic regimens for use of antenatal glucocorticoids. Am J Obstet Gynecol. 1995;173 (1): 254–262.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Yeh TF, Lin YJ, Lin HC, et al. Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. N Engl J Med. 2004;350 (13): 1304–1313.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Stonestreet BS, Elitt CM, Markowitz J, et al. Effects of antenatal corticosteroids on regional brain and non-neural tissue water content in the ovine fetus. J Soc Gynecol Investig. 2003;10 (2): 59–66.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Stonestreet BS, Petersson KH, Sadowska GB, et al. Antenatal steroids decrease blood-brain barrier permeability in the ovine fetus. Am J Physiol. 1999;276 (2 pt 2): R283–R289.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kim CR, Sadowska GB, Petersson KH, et al. Effects of postnatal steroids on Na+/K+-ATPase activity and alpha1- and beta1-subunit protein expression in the cerebral cortex and renal cortex of newborn lambs. Reprod Fertil Dev. 2006;18 (4): 413–423.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Wintour EM, Alcorn D, McFarlane A, et al. Effect of maternal glucocorticoid treatment on fetal fluids in sheep at 0.4 gestation. Am J Physiol. 1994;266 (4 pt 2): R1174–R1181.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Omar SA, DeCristofaro JD, Agarwal BI, et al. Effects of prenatal steroids on water and sodium homeostasis in extremely low birth weight neonates. Pediatrics. 1999;104 (3 pt 1): 482–488.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Petershack JA, Nagaraja SC, Guillery EN. Role of glucocorticoids in the maturation of renal cortical Na+-K+-ATPase during fetal life in sheep. Am J Physiol. 1999;276 (6 pt 2): R1825–R1832.PubMedPubMedCentralGoogle Scholar
  30. 30.
    al-Dahan J, Stimmler L, Chantler C, et al. The effect of antenatal dexamethasone administration on glomerular filtration rate and renal sodium excretion in premature infants. Pediatr Nephrol. 1987;1 (2): 131–135.PubMedCrossRefGoogle Scholar
  31. 31.
    Back SA, Riddle A, Hohimer AR. Role of instrumented fetal sheep preparations in defining the pathogenesis of human periventricular white-matter injury. J Child Neurol. 2006;21 (7): 582–589.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Stonestreet BS, Oen-Hsiao JM, Petersson KH, et al. Regulation of brain water during acute hyperosmolality in ovine fetuses, lambs, and adults. J Appl Physiol. 2003;94 (4): 1491–1500.PubMedCrossRefGoogle Scholar
  33. 33.
    Jorgensen PL. Purification and characterization of (Na+ plus K+)-ATPase. 3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim Biophys Acta. 1974;356 (1): 36–52.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Lo SC, August TR, Liberman UA, et al. Dependence of renal (Na+ + K+)-adenosine triphosphatase activity on thyroid status. J Biol Chem. 1976;251 (24): 7826–7833.PubMedGoogle Scholar
  35. 35.
    Schmitt CA, McDonough AA. Developmental and thyroid hormone regulation of two molecular forms of Na+-K+-ATPase in brain. J Biol Chem. 1986;261 (22): 10439–10444.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Fiske C, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66 (2): 375–400.Google Scholar
  37. 37.
    Mehter NS, Sadowska GB, Malaeb SN, et al. Na+, K+-ATPase activity and subunit isoform protein abundance: effects of antenatal glucocorticoids in the frontal cerebral cortex and renal cortex of ovine fetuses. Reprod Sci. 2009;16 (3): 294–307. Epub 2008 Nov 2011.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Tseng YT, Yano N, Rojan A, et al. Ontogeny of phosphoinositide 3-kinase signaling in developing heart: effect of acute beta-adrenergic stimulation. Am J Physiol Heart Circ Physiol. 2005;289 (5): H1834–H1842.PubMedCrossRefGoogle Scholar
  39. 39.
    Wintour EM. Developmental aspects of the hypothalamic-pituitary-adrenal axis. J Dev Physiol. 1984;6 (3): 291–299.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Stonestreet BS, Patlak CS, Pettigrew KD, et al. Ontogeny of blood-brain barrier function in ovine fetuses, lambs, and adults. Am J Physiol. 1996;271 (6 pt 2): R1594–R1601.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Duncan AR, Sadowska GB, Stonestreet BS. Ontogeny and the effects of exogenous and endogenous glucocorticoids on tight junction protein expression in ovine cerebral cortices. Brain Res. 2009;1303:15–25.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Devarajan P, Benz EJ. Translational regulation of Na-K-ATPase subunit mRNAs by glucocorticoids. Am J Physiol Renal Physiol. 2000;279 (6): F1132–F1138.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Malaeb SN, Hovanesian V, Sarasin MD, et al. Effects of maternal antenatal glucocorticoid treatment on apoptosis in the ovine fetal cerebral cortex. J Neurosci Res. 2009;87 (1): 179–189.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3 (1): 79–83.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    McIntosh GH, Baghurst KI, Potter BJ, et al. Foetal brain development in the sheep. Neuropathol Appl Neurobiol. 1979;5 (2): 103–114.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Barlow RM. The foetal sheep: morphogenesis of the nervous system and histochemical aspects of myelination. J Comp Neurol. 1969;135 (3): 249–262.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Aperia A, Larsson L, Zetterstrom R. Hormonal induction of Na-K-ATPase in developing proximal tubular cells. Am J Physiol. 1981;241 (4): F356–F360.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Rane S, Aperia A. Ontogeny of Na-K-ATPase activity in thick ascending limb and of concentrating capacity. Am J Physiol. 1985;249 (5 pt 2): F723–F728.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Celsi G, Nishi A, Akusjarvi G, et al. Abundance of Na(+)-K(+)-ATPase mRNA is regulated by glucocorticoid hormones in infant rat kidneys. Am J Physiol. 1991;260 (2 pt 2): F192–F197.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Turner AJ, Brown RD, Carlstrom M, et al. Mechanisms of neonatal increase in glomerular filtration rate. Am J Physiol Regul Integr Comp Physiol. 2008;295 (3): R916–R921.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Guillery EN, Huss DJ, McDonough AA, et al. Posttranscriptional upregulation of Na(+)-K(+)-ATPase activity in newborn guinea pig renal cortex. Am J Physiol. 1997;273 (2 pt 2): F254–F263.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Matthews SG. Antenatal glucocorticoids and the developing brain: mechanisms of action. Semin Neonatol. 2001;6 (4): 309–317.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Schinkel AH, Wagenaar E, van Deemter L, et al. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest. 1995;96 (4): 1698–1705.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hantzis V, Albiston A, Matsacos D, et al. Effect of early glucocorticoid treatment on MR and GR in late gestation ovine kidney. Kidney International. 2002;61 (2): 405–413.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Jobe AH, Polk DH, Ervin MG, et al. Preterm betamethasone treatment of fetal sheep: outcome after term delivery. J Soc Gynecol Investig. 1996;3 (5): 250–258.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Matthews SG. Antenatal glucocorticoids and programming of the developing CNS. Pediatr Res. 2000;47 (3): 291–300.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Rose JC, Kute TE, Winkler L. Glucocorticoid receptors in sheep brain tissues during development. Am J Physiol. 1985;249 (4 pt 1): E345–E349.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Richards EM, Hua Y, Keller-Wood M. Pharmacology and physiology of ovine corticosteroid receptors. Neuroendocrinology. 2003;77 (1): 2–14.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2011

Authors and Affiliations

  • Chang-Ryul Kim
    • 1
    • 2
  • Grazyna B. Sadowska
    • 1
  • Stephanie A. Newton
    • 1
  • Maricruz Merino
    • 1
  • Katherine H. Petersson
    • 1
  • James F. Padbury
    • 1
  • Barbara S. Stonestreet
    • 1
    Email author
  1. 1.Department of Pediatrics, Women and Infants Hospital of Rhode IslandThe Warren Alpert Medical School of Brown UniversityProvidenceUSA
  2. 2.Department of PediatricsHanyang University College of MedicineSeoulKorea

Personalised recommendations