Advertisement

Research on Chemical Intermediates

, Volume 25, Issue 1, pp 13–24 | Cite as

Calorimetric study of the adsorption of air pollutants on alumina-supported tin and gallium oxides

  • B. Gergely
  • A. Auroux
Article

Abstract

The differential enthalpies of adsorption of air pollutants such as SO2, NO2, NO on aluminasupported tin and gallium oxides were measured by calorimetry coupled with isothermal volumetry. Whatever the amount of tin or gallium on alumina, the enthalpies of adsorption of SO2 at low coverage were of the same order of magnitude or up to 50 kJ/mol lower than those of the support. The amount of SO2 adsorbed decreased with increasing SnO2 loading and increased with increasing Ga2O3 loading on the alumina. The differential enthalpies of adsorption of NO2 are close to those on the support whatever the amount of tin or gallium (around 120–130 kJ/mol). NO is only reversibly adsorbed on the samples. The calorimetric data of ammonia adsorption are given for comparison.

Keywords

Basic Site Calorimetric Study Gallium Oxide Ammonia Adsorption Differential Heat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Iwamoto, Catal. Today 29, 29 (1996).CrossRefGoogle Scholar
  2. 2.
    R. Burch and P.J. Millington, Catal. Today 29, 37 (1996).CrossRefGoogle Scholar
  3. 3.
    A. Auroux and A. Gervasini, J. Phys. Chem. 94, 6371 (1990).CrossRefGoogle Scholar
  4. 4.
    A. Gervasini, G. Bellussi, J. Fenyvesi, and A. Auroux, J. Phys. Chem. 99, 5117 (1995).CrossRefGoogle Scholar
  5. 5.
    J. Shen, R.D. Cortright, Y. Chen, and J.A. Dumesic, J. Phys. Chem. 98, 8067 (1994).CrossRefGoogle Scholar
  6. 6.
    A. Auroux, Topics in Catalysis 4, 71 (1997).CrossRefGoogle Scholar
  7. 7.
    P.J. Andersen and H.H. Kung, Catalysis 11, 441 (1995).CrossRefGoogle Scholar
  8. 8.
    N. Cardona-Martinez and J.A. Dumesic, Adv. Catal. 38, 149 (1992).CrossRefGoogle Scholar
  9. 9.
    A. Auroux, J. Fenyvesi, and A. Gervasini, Langmuir 12, 5356 (1996).CrossRefGoogle Scholar
  10. 10.
    J. Shen, R.D. Cortright, Y. Chen, and J.A. Dumesic, Catal. Letters 26, 247 (1994).CrossRefGoogle Scholar
  11. 11.
    N.D. Gangal, N.M. Gupta, and R.M. Iyer, J. Catal. 126, 13 (1990).CrossRefGoogle Scholar
  12. 12.
    R. Burch and L.C. Garla, J. Catal. 71, 360 (1981).CrossRefGoogle Scholar
  13. 13.
    K. Balakrishnan and J. Schwank, J. Catal. 132, 451 (1991).CrossRefGoogle Scholar
  14. 14.
    E.W. Thornton and P.G. Harrison, J. Chem. Soc. Faraday Trans. l. 71, 461 (1975).CrossRefGoogle Scholar
  15. 15.
    P. Kirszensztejn, W. Przystajko, and T.N. Bell, Catal. Letters 18, 391 (1993).CrossRefGoogle Scholar
  16. 16.
    A. Gervasini and A. Auroux, J. Phys. Chem. 97, 2628 (1993).CrossRefGoogle Scholar
  17. 17.
    K. Shimizu, A. Satsuma, and T. Hattori, Appl. Catal. B: Environmental 16, 319 (1998).CrossRefGoogle Scholar
  18. 18.
    F. Berger, E. Beche, R. Berjoan, D. Klein, and A. Chambaudet, Appl. Surf. Sci. 93, 9 (1996).CrossRefGoogle Scholar
  19. 19.
    R. Bacaud, P. Bussière, and F. Figueras, J. Catal. 69, 399 (1981).CrossRefGoogle Scholar

Copyright information

© Springer 1999

Authors and Affiliations

  • B. Gergely
    • 1
  • A. Auroux
    • 1
  1. 1.Institut de Recherches sur la CatalyseCNRSVilleurbanne CedexFrance

Personalised recommendations