Advertisement

Research on Chemical Intermediates

, Volume 24, Issue 6, pp 695–705 | Cite as

Reaction pathways and kinetic parameters of sonolytically induced oxidation of dimethyl methylphosphonate in air saturated aqueous solutions

  • Kevin E. O’Shea
  • Ailette Aguila
  • K. Vinodgopal
  • Prashant V. Kamat
Article

Abstract

The oxidation of dimethyl methylphosphonate (DMMP) was examined under ultrasonic conditions (640 kHz) in oxygen saturated aqueous solutions. Acetic acid, formic acid, methylphosphonic acid, phosphate, and oxalic acid have been identified as the major products produced during the sonolytic irradiation of DMMP. The initial rates of oxidation were determined as a function of initial DMMP concentration. The kinetic behavior of the system is consistent with the Langmuir-Hinshelwood model implying oxidative processes occur at or near the gas-liquid interface during cavitation. Mechanistic implications and conclusions are discussed based on the product distributions and kinetic parameters.

Keywords

Cavitation Oxalic Acid Cavitation Bubble Ultrasonic Irradiation Organophosphorus Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For comprehensive reviews see: a) T.J. Mason and J.P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Ellis Horwood Limited, Chichester, 1988.Google Scholar
  2. 2.
    K.S. Suslick, (Ed.) Ultrasound: Its Chemical, Physical and Biological Effects, VCH Publishers, New York, 1988.Google Scholar
  3. 3.
    For an excellent review see N. Serpone, and P. Colarusso, Res. Chem. Intermed. 20, 635 (1994).CrossRefGoogle Scholar
  4. 4.
    K. Umemura, N. Yumita, R. Nishigaki, and S. Umemura, Cancer Lett. 102, 151 (1996).CrossRefGoogle Scholar
  5. 5.
    J.W. Chen, J.A. Chang, and G.V. Smith, Chem Eng. Prog. Symp. Ser. 67, 18 (1971).Google Scholar
  6. 6.
    I. Hua, R.H. Hochemer, and M.R. Hoffmann Environ. Sci. Technol., 29, 2790 (1995).CrossRefGoogle Scholar
  7. 7.
    I. Hua, and M.R. Hoffmann, Environ. Sci. Technol. 30, 864 (1996).CrossRefGoogle Scholar
  8. 8.
    N. Serpone and P. Colarusso, Res. Chem. Intermed. 22, 61 (1996).CrossRefGoogle Scholar
  9. 9.
    N. Serpone, R. Terian, H. Hidaka, and E. Pelizzetti, J. Phys. Chem. 98, 2634 (1994).CrossRefGoogle Scholar
  10. 10.
    N. Serpone, R. Terian, P. Colarusso, C. Minero, E. Pelizzetti, and H. Hidaka, Res. Chem. Intermed. 18, 183 (1992).CrossRefGoogle Scholar
  11. 11.
    K.E. O’Shea, S. Beightol, I. Garcia, M. Aguilar, D.V. Kalen, W.J. Cooper, J. Photochem. Photobio. A: Chem. 107, 221 (1997).CrossRefGoogle Scholar
  12. 12.
    K.E. O’Shea, I. Garcia, and M. Aguilar, Res. Chem. Intermed., 23, 325 (1997).CrossRefGoogle Scholar
  13. 13.
    K.E. O’Shea, D.V. Kalen, W.J. Cooper, I. Garcia, and M. Aguilar, In: Environmental Applications of Ionizing Radiation, W.J. Cooper, R. Curry, K.E. O’Shea, (Eds.), John Wiley & Sons, Inc., New York, in press.Google Scholar
  14. 14.
    Y.C. Yang, J.A. Baker, and J.R. Ward, Chem. Rev., 92, 1792 (1992).CrossRefGoogle Scholar
  15. 15.
    A. Kotronarou, G. Mills, and M.R. Hoffmann, Environ. Sci. Technol. 26, 1460 (1992).CrossRefGoogle Scholar
  16. 16.
    R. Rabinowith, J. Am. Chem. Soc. 82, 4564 (1960).CrossRefGoogle Scholar
  17. 17.
    P.V. Kamat, and K. Vinodgopal, Langmuir, 12, 5739 (1996).CrossRefGoogle Scholar
  18. 18.
    Pulse radiolysis experiments performed in the Radiation Laboratory at the University of Notre Dame were used to determine the second order rate constant of hydroxyl radical with DMMP (k=2×108 M−1S−1). Experiments employing tetranitromethane as a trap for reducing radicals suggest hydroxyl radical reacts with DMMP to yield a carbon centered radical. K.E. O’Shea, A. Aguilar, and K.-D. Asmus, unpublished results.Google Scholar
  19. 19.
    a) D.F. Ollis, E. Pelizzetti, N. Serpone, Environ. Sci. Tech. 25, 1523 (1991). b) C. Turchi, and D.F. Ollis, J. Catal. 122, 178 (1990).Google Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  • Kevin E. O’Shea
    • 1
  • Ailette Aguila
    • 1
  • K. Vinodgopal
    • 2
  • Prashant V. Kamat
    • 3
  1. 1.Department of ChemistryFlorida International UniversityMiami
  2. 2.Department of ChemistryIndiana University NorthwestGary
  3. 3.Radiation LaboratoryUniversity of Notre DameNotre Dame

Personalised recommendations