Research on Chemical Intermediates

, Volume 23, Issue 4, pp 341–354 | Cite as

The Photo-Fenton Oxidation — A cheap and efficient wastewater treatment method

  • Rupert Bauer
  • Hubert Fallmann


Advanced Oxidation Processes (AOPs) for wastewater treatment are gaining more importance since biological treatment plants are often not sufficient for highly contaminated or toxic wastewaters. In order to find out the most efficient and cheap AOP, investigations were concentrated on methods that can use sunlight. The systems TiO2/UV, Fe2+/H2O2/UV (Photo-Fenton reaction), Fe2+/O2/UV and Fe2+/O3/UV were compared. Since the Photo-Fenton system was the most effective, pilot plant experiments with industrial wastewaters and sunlight experiments were carried out. Finally a rough cost estimate shows that Photo-Fenton treatment with sunlight is far cheaper than other available AOPs, namely ozonization.


Ozone H202 Landfill Leachate Lewis Publisher Large Scale Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Hauchler (Ed.), Globale Trends 1996 — Fakten, Analysen, Prognosen, Fischer Taschenbuch Verlag, Frankfurth 1995, pp. 280–307.Google Scholar
  2. 2.
    O. Legrini, E. Oliveros, A.M. Braun, Photochemical Processes for Water Treatment, Chem. Rev. 93, 671 (1993).Google Scholar
  3. 3.
    G. Ruppert, R. Bauer, G. Heisler, Chemosphere 28, 1447 (1994).CrossRefGoogle Scholar
  4. 4.
    B. Langlais, D.A. Reckhow, D.R. Brink (Eds.), Ozone in Water Treatment, Application and Engineering, Lewis Publishers, Chelsea, Michigan, 1991.Google Scholar
  5. 5.
    E. Lipczynska-Kochany, Chem. Oxid. 3, 12 (1993, Pub. 1994).Google Scholar
  6. 6.
    J. Pignatello, Environ. Sci. Technol. 26, 944 (1992).CrossRefGoogle Scholar
  7. 7.
    M. Barbeni, C. Minero, E. Pelizzeti, E. Borgarello, and N. Serpone, Chemosphere 16, 2225 (1987).CrossRefGoogle Scholar
  8. 8.
    G. Ruppert, R. Bauer, and G. Heisler, J. Photochem. Photobiol. A: Chem. 73, 75 (1993).CrossRefGoogle Scholar
  9. 9.
    J. Kiwi, C. Pulgarin, and P. Peringer, Appl. Catal. B 3, 335 (1994).CrossRefGoogle Scholar
  10. 10.
    M. Schiavello (Ed.), Photocatalysis and Environment, Kluwer Academic Publishers, Dordrecht, 1988.Google Scholar
  11. 11.
    R. Venkatadri and R. W. Peters, Hazard. Waste Hazard. Mater. 10, 107 (1993).Google Scholar
  12. 12.
    K. Hofstadler, R. Bauer, S. Novalic, and G. Heisler, Environ. Sci. Tech. 28, 670 (1994).CrossRefGoogle Scholar
  13. 13.
    U. Stafford, K.A. Gray, P.V. Kamat, Heterogeneous Chemistry Reviews 3, 77 (1996).CrossRefGoogle Scholar
  14. 14.
    N. Getoff and S. Solar, Radiat. Phys. Chem. 31, 121 (1988).Google Scholar
  15. 15.
    P. Gehringer, H. Eschweiler, and H. Fiedler, Radiat. Phys. Chem. 46, 1075 (1995).CrossRefGoogle Scholar
  16. 16.
    E.A. Podzorova, High Energy Chem. (Engl. Transl.) 29, 256 (1995).Google Scholar
  17. 17.
    J. Blanco and S. Malato, Tecnologia de fotocatálisis solar, Almería (Spain), 1996.Google Scholar
  18. 18.
    C. Minero, E. Pelizzetti, S. Malato, and J. Blanco, Chemosphere 26, 2103 (1993).CrossRefGoogle Scholar
  19. 19.
    D. Bockelmann, D. Weichgrebe, R. Goslich, and D. Bahnemann, Solar Energy Materials and Solar Cells 38, 441 (1995).CrossRefGoogle Scholar
  20. 20.
    R. Bauer, Chemosphere 29, 1225 (1994).CrossRefGoogle Scholar
  21. 21.
    G. Ruppert, Dissertation, University of Technology Vienna, 1994.Google Scholar
  22. 22.
    H. Fallmann, R. Bauer, and S. Malato, unpublished results.Google Scholar
  23. 23.
    W. Spacek and R. Bauer, Chemosphere 30, 477 (1995).CrossRefGoogle Scholar
  24. 24.
    D. Bahnemann, J. Cunningham, M.A. Fox, E. Pelizzetti, P. Pichat, and N. Serpone. In: Aquatic and Surface Photochemistry, G.R. Helz, R.G. Zepp, and D.C. Crosby (Eds.), Lewis Publishers, Boca Raton, 1994, pp. 261–316.Google Scholar
  25. 25.
    H.J.H. Fenton, J. Chem Soc. 65, 899 (1894).Google Scholar
  26. 26.
    Ch. Walling, Acc. Chem. 8, 125 (1975).CrossRefGoogle Scholar
  27. 27.
    B.C. Faust. In: Aquatic and Surface Photochemistry, G.R. Helz, R.G. Zepp, and D.G. Crosby (Eds.), Lewis Publishers, Boca Raton 1994, pp. 3–38.Google Scholar
  28. 28.
    J. Hoigné, Y. Zuo, and L. Nowell. In: Aquatic and Surface Photochemistry, G.R. Helz, R.G. Zepp, D.G. Crosby (Eds.), Lewis Publishers, Boca Raton 1994, pp. 75–84.Google Scholar
  29. 29.
    R.G. Zepp, B.C. Faust, and J. Hoigné, Environ. Sci. Technol. 26, 313 (1992).CrossRefGoogle Scholar
  30. 30.
    A. Safarzadeh-Amiri, J.R. Bolton, and S.R. Cater, J. Adv. Oxid. Technol. 1, 18 (1996).Google Scholar
  31. 31.
    R. Bauer, G. Ruppert, K. Hofstadler, G. Heisler, and S. Novalic. In: Proceedings of the ISES Solar World Congress, L. Imre and A. Bitai (Eds.), Budapest, Vol. I, pp. 233–238 (1993).Google Scholar
  32. 32.
    J.R. Bolton, K.G. Bircher, W. Tumas, and C.A. Tolman, J. Adv. Oxid. Technol. 1, 13 (1996).Google Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • Rupert Bauer
    • 1
  • Hubert Fallmann
    • 1
  1. 1.Institute of Physical ChemistryTechnical University ViennaWienAustria

Personalised recommendations