Skip to main content
Log in

Photocatalytic degradation of naphthalene and anthracene: GC-MS analysis of the degradation pathway

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The mechanism of the photocatalytic transformation of naphthalene and anthracene has been studied qualitatively in aqueous suspensions of titanium dioxide under UV-irradiation. The degradation products were identified by GC-MS technique. 15 different intermediates have been identified during the photocatalytic degradation of naphthalene. A detailed reaction mechanism is proposed to explain their formation. For the photocatalytic degradation of anthracene phthalic acid and 9, 10-anthraquinone have been found as relatively stable intermediates. Their photocatalytic degradation has been followed in separate experiments to achieve further clarification of the reaction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.L. Burlingame, B.J. Kimble, E.S. Scott, D.M. Wilson, M.J. Stasch, J.W. de Leeuw, and L.H. Keith. In: Identification and Analysis of Organic Pollutants in Water, L.H. Keith (Ed.), Ann Arbor Science, 1976, p. 587.

  2. R.M. Atlas, J. Chem. Tech. Biotechnol. 52, 149 (1991).

    CAS  Google Scholar 

  3. GRACE Dearborn, Technical Report: Klaraid 4292 Field Test at Ras Lanuf Oil & Gas Co. Inc., 1994.

  4. C. Maillard-Dupuy, C. Guillard, H. Courbon, and P. Pichat, Environ. Sci. Technol. 28, 2176 (1994).

    Article  CAS  Google Scholar 

  5. R. Terzian, N. Serpone, C. Minero, E. Pelizzetti, and H. Hidaka, J. Photochem. Photobiol. A: Chem. 55, 243 (1990).

    Article  CAS  Google Scholar 

  6. Y. Mao, C. Schöneich and K.-D. Asmus, J. Phys. Chem. 95, 10080 (1991).

    Article  CAS  Google Scholar 

  7. C. Minero, C. Aliberti, E. Pelizzetti, R. Terzian, and N. Serpone, Langmuir 7, 928 (1991).

    Article  CAS  Google Scholar 

  8. G. Al-Sayyed, J.-C. D'Oliveira, and P. Pichat, J. Photochem. Photobiol. A: Chem. 58, 996 (1991).

    Article  Google Scholar 

  9. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, and A. Itaya, Bull. Chem. Soc. Jpn. 58, 2015 (1985).

    Article  CAS  Google Scholar 

  10. E. Pelizzetti, V. Carlin, C. Minero, and M. Grätzel, New J. Chem. 15, 351 (1991).

    CAS  Google Scholar 

  11. R.W. Matthews, Wat. Res. 20, 569 (1986).

    Article  CAS  Google Scholar 

  12. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  13. F. Sabin, T. Türk, and A. Vogler, Z. Wasser-Abwasser-Forsch. 25, 163 (1992).

    CAS  Google Scholar 

  14. R.W. Matthews, Pure & Appl. Chem. 64, 1285 (1992).

    Article  CAS  Google Scholar 

  15. M. Bekbölet, M. Lindner, D. Weichgrebe, and D.W. Bahnemann, Solar Energy 56, 455 (1996).

    Article  Google Scholar 

  16. A. Heller, M. Nair, L. Davidson, Z. Luo, J. Schwitzgebel, J. Norrell, J.R. Brock, S.-E. Lindquist, and J.G. Ekerdt. In: Photocatalytic Purification and Treatment of Water and Air, D.F. Ollis and H. Al-Ekabi (Eds.), Elsevier, Amsterdam, 1993, p. 139.

    Google Scholar 

  17. D.W. Bahnemann, D. Bockelmann, R. Goslich, M. Hilgendorff, and D. Weichgrebe. In: Photocatalytic Purification and Treatment of Water and Air, D.F. Ollis and H. Al-Ekabi (Eds.), Elsevier, Amsterdam, 1993, p. 301.

    Google Scholar 

  18. D. Weichgrebe, A. Vogelpohl, D. Bockelmann, and D. Bahnemann. In: Photocatalytic Purification and Treatment of Water and Air, D.F. Ollis and H. Al-Ekabi (Eds.), Elsevier, Amsterdam, 1993, p. 579.

    Google Scholar 

  19. L. Tinucci, E. Borgarello, C. Minero, and E. Pelizzetti. In: Photocatalytic Purification and Treatment of Water and Air, D.F. Ollis and H. Al-Ekabi (Eds.), Elsevier, Amsterdam, 1993, p. 585.

    Google Scholar 

  20. D. Bockelmann, D. Weichgrebe, R. Goslich, and D. Bahnemann, Sol. Energy Mater. Sol. Cells, 38, 441 (1995).

    Article  CAS  Google Scholar 

  21. H. Gerischer, Topics Appl. Phys. 31, 115 (1979).

    CAS  Google Scholar 

  22. C. Kormann, D.W. Bahnemann, M.R. Hoffmann, J. Phys. Chem. 92, 5196 (1988).

    Article  CAS  Google Scholar 

  23. D. Bahnemann, J. Cunningham, M.A. Fox, E. Pelizzetti, P. Pichat, and N. Serpone. In: Aquatic and Surface Photochemistry, G.R. Helz, R.G. Zepp, and D.G. Crosby (Eds.), Lewis Publishers, Boca Raton, 1994, p. 261.

    Google Scholar 

  24. J. Theurich, M. Lindner, and D. Bahnemann, Langmuir, 12, 6368 (1996).

    Article  CAS  Google Scholar 

  25. M. Hilgendorff, M. Hilgendorff, and D.W. Bahnemann, J. Adv. Oxid. Technol. 1, 35 (1996).

    CAS  Google Scholar 

  26. A. Mills, S. Morris, and R. Davies, J. Photochem. Photobiol. A: Chem. 70, 183 (1993).

    Article  CAS  Google Scholar 

  27. S. Das, M. Muneer, and K.R. Gopidas, J. Photochem. Photobiol. A: Chem. 77, 83 (1994).

    Article  CAS  Google Scholar 

  28. J.C. Ireland, B. Dávila, H. Moreno, S.K. Fink, and S. Tassos, Chemosphere, 30, 965 (1995).

    Article  CAS  Google Scholar 

  29. J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, New. J. Chem. 17, 487 (1993).

    CAS  Google Scholar 

  30. C. Guillard, H. Delprat, V.C. Hoang, and P. Pichat, J. Atmos. Chem. 16, 47 (1993).

    Article  CAS  Google Scholar 

  31. M.A. Fox, C.C. Chen, And J.N.N. Younathan, J. Org. Chem. 49, 1969 (1984).

    Article  CAS  Google Scholar 

  32. R. Vogel, M. Al-Ghazali, F.E. Ehamed, M. Abdulazis, I. Rajab, J. Theurich, and D. Bahnemann, in preparation.

  33. Gattermann-Wieland, Die Praxis des Organischen Chemikers, Walter de Gruyter, Berlin, 1982, p. 573.

    Google Scholar 

  34. R. Memming, Top. Chur. Chem. 143, 81 (1988).

    Google Scholar 

  35. H. Gerischer and A. Heller, J. Phys. Chem. 95, 5261 (1991).

    Article  CAS  Google Scholar 

  36. C. Richard, New J. Chem. 18, 443 (1994).

    CAS  Google Scholar 

  37. G. Peyton, O. Bell, E. Girin, and M. Lefaivre, Environ. Sci. Technol. 29, 1710 (1995).

    Article  CAS  Google Scholar 

  38. D. Schmelling, K. Gray, and P. Kamat, Environ. Sci. Technol. 30, 2547 (1996).

    Article  CAS  Google Scholar 

  39. J.P. Hoare. In: Standard Potentials in Aqueous Solution, A.J. Bard, R. Parsons, and J. Jordan (Eds.), Marcel Dekker Inc., New York Basel, 1985, p. 49.

    Google Scholar 

  40. M. Anpo, T. Shima, and Y. Kubokawa, Chem. Lett. 1799 (1985).

  41. G.P. Lepore, C.H. Langford, J. Vichova, and A. Vlcek, Jr., J. Photochem. Photobiol. A: Chem. 75, 67 (1993).

    Article  CAS  Google Scholar 

  42. C.D. Jaeger and A.J. Bard, J. Phys. Chem. 83, 3146 (1979).

    Article  CAS  Google Scholar 

  43. C.S. Turchi and D.F. Ollis, J. Catal. 122, 178 (1990).

    Article  CAS  Google Scholar 

  44. J.R. Harbour, J. Tromp, and M.L. Hair, Can. J. Chem. 63, 204 (1985).

    Article  CAS  Google Scholar 

  45. V. Brezova, A. Stasko, and L. Lapcik, Jr., J. Photochem. Photobiol. A: Chem. 59, 115 (1991).

    Article  CAS  Google Scholar 

  46. M.E. Sigman, S.P. Zingg, R.M. Pagni, and J.H. Burns, Tetrahedron Lett. 32, 5737 (1991).

    Article  CAS  Google Scholar 

  47. X.-M. Pan, M.N. Schuchmann, and C. von Sonntag, J. Chem. Soc. Perkin Trans. 2, 289 (1993).

    Google Scholar 

  48. C. von Sonntag and M.N. Schuchmann, Angew. Chem. Int. Ed. Engl. 30, 1229 (1991).

    Article  Google Scholar 

  49. C. von Sonntag, The Chemical Basis of Radiation Biology, Taylor & Francis, London, 1987, p. 67.

    Google Scholar 

  50. O.I. Micic and M.T. Nenadovic, J. Phys. Chem. 80, 940 (1976).

    Article  CAS  Google Scholar 

  51. E.J. Land and M. Ebert, Trans. Faraday Soc. 63, 1181 (1967).

    Article  CAS  Google Scholar 

  52. T.J. Fellows and G. Hughes, J. Chem. Soc. Perkin II 1182 (1972).

    Google Scholar 

  53. H. Beyer and W. Walter, Lehrbuch der Organischen Chemie 21st Edition, S. Hirzel Verlag, Stuttgart, 1988, p. 557.

    Google Scholar 

  54. H.R. Christen and F. Vögtle, Organische Chemie Band 1, Otto Salle Verlag Frankfurt and Verlag Sauerländer Aarau Frankfurt Salzburg, 1988, p. 782.

  55. K. Bobrowski and N.V. Raghavan, J. Phys. Chem. 86, 4432 (1982).

    Article  CAS  Google Scholar 

  56. B. Kraeutler and A.J. Bard, J. Am. Chem. Soc. 99, 7729 (1977).

    Article  CAS  Google Scholar 

  57. B. Kraeutler and A.J. Bard, J. Am. Chem. Soc. 100, 5985 (1978).

    Article  CAS  Google Scholar 

  58. O.-A. Neumüller, Römpps Chemie Lexikon Band 4: M-PK, Franckh'sche Verlagshandlung Stuttgart, 1979, p. 2716.

    Google Scholar 

  59. H. Beyer and W. Walter, Lehrbuch der Organischen Chemie 21st Edition, S. Hirzel Verlag Stuttgart, 1988, p. 639.

    Google Scholar 

  60. A. Mills, C.E. Holland, R.H. Davies, and D. Worsley, J. Photochem. Photobiol. A: Chem. 83, 257 (1994).

    Article  CAS  Google Scholar 

  61. V. Brezová, M. Ceppan, E. Brandsteterová, M. Breza, and L. Lapcik, J. Photochem. Photobiol. A: Chem. 59, 385 (1991).

    Article  Google Scholar 

  62. R.W. Matthews, J. Chem. Soc. Faraday Trans. 80, 457 (1984).

    Article  CAS  Google Scholar 

  63. T. Sakata, T. Kawai, and K. Hashimioto, J. Phys. Chem. 88, 2344 (1984)

    Article  CAS  Google Scholar 

  64. V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero, and E. Pelizzetti, Toxicol. Environ. Chem. 16, 89 (1988).

    Article  CAS  Google Scholar 

  65. R.W. Matthews and S.R. McEvoy, J. Photochem. Photobiol. A: Chem. 64, 231 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theurich, J., Bahnemann, D.W., Vogel, R. et al. Photocatalytic degradation of naphthalene and anthracene: GC-MS analysis of the degradation pathway. Res. Chem. Intermed. 23, 247–274 (1997). https://doi.org/10.1163/156856797X00457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856797X00457

Keywords

Navigation