Anion radicals of [60]fullerenes. An EPR study

  • A. Staško
  • V. Brezová
  • P. Rapta
  • S. Biskupič
  • K. -P. Dinse
  • A. Gügel
Article

Abstract

Photochemically induced electron transfer in homogeneous systems (using triethylamine donor) and heterogeneous systems (using photoexcited TiO2 suspension) was applied in in situ reduction of [60]fullerene. The anion radicals generated were characterized by means of EPR and VIS/near-IR spectroscopy. Narrow EPR lines were found. Radical A with gA=2.0000 and peak-to-peak width, ppA=0.09mT was observed as the primary product; followed by its consecutive product B with gB=2.0006, ppB=0.04mT, and in some cases product C with gC=2.0009 and ppc<0.1 mT. Radical A was assigned to [60]fullerene mono-anion, also characterized by a near-IR band at 1077 nm. B is presumably di-anion or a dimeric form of mono-anion. Identical results were also obtained using cathodic in situ reduction. Applying these generation techniques to [60]fullerene derivatives produced narrow EPR lines analogous to those described for pristine [60]fullerene. This was the case not only in organic solvents, but also in aqueous solutions. The results obtained present a contrast with the original ex situ EPR investigations describing [60]fullerene mono-anion with wide lines. According to the results presented here, the narrow and wide EPR lines do not represent contradictory phenomena, but are an integral part of the relatively complicated manifestations of various fullerene states and both will have to be seriously considered in the future.

Keywords

Fullerene Et3N Cathodic Reduction HMPA TiO2 Concentration 

References

  1. 1.
    H.W. Kroto, A.W. Allaf, and S.P. Balm, Chem. Rev. 91, 1213 (1991).CrossRefGoogle Scholar
  2. 2.
    G.S. Hammond and V.J. Kuck (Eds.), Fullerenes, Synthesis, Properties and Chemistry of Large Carbon Clusters, ACS Symposium Series 481, ACS, Washington, 1992.Google Scholar
  3. 3.
    H.W. Kroto, J.E. Fischer, and D.E. Cox (Eds.), The Fullerenes, Pergamon Press, Oxford, 1993.Google Scholar
  4. 4.
    K.M. Kadish and R.S. Ruoff (Eds.), Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, The Electrochemical Society, Pennington, NJ, Vol. 94–24, 1994.Google Scholar
  5. 5.
    K.M. Kadish and R.S. Ruoff (Eds.), Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials., The Electrochemical Society, Pennington, NJ, Vol. 95–10, 1995.Google Scholar
  6. 6.
    D. Dubois, K.M. Kadish, S. Flanagan, R.E. Haufler, L.P.F. Chibante, and L.J. Wilson, J. Am. Chem. Soc. 113, 4364 (1991).CrossRefGoogle Scholar
  7. 7.
    D. Dubois, M.T. Jones, and K.M. Kadish, J. Am. Chem. Soc. 114, 6446 (1992).CrossRefGoogle Scholar
  8. 8.
    W. Koh, D. Dubois, W. Kutner, M.T. Jones, and K.M. Kadish, J. Phys. Chem. 96, 4163 (1992).CrossRefGoogle Scholar
  9. 9.
    D. Dubois, G. Moninot, W. Kutner, M.T. Jones, and K.M. Kadish, J. Phys. Chem. 96, 7137 (1992).CrossRefGoogle Scholar
  10. 10.
    M.M. Khaled, R.T. Carlin, P.C. Trulove, G.R. Eaton, and S.S. Eaton, J. Am. Chem. Soc. 116, 3465 (1994).CrossRefGoogle Scholar
  11. 11.
    P.C. Trulove, R.T. Carlin, G.R. Eaton, and S.S. Eaton, J. Am. Chem. Soc. 117, 6265 (1995).CrossRefGoogle Scholar
  12. 12.
    S.S. Eaton, A. Kee, R. Konda, G.R. Eaton, P.C. Trulove, and R.T. Carlin, J. Phys. Chem. 100, 6910 (1996).CrossRefGoogle Scholar
  13. 13.
    P.-M. Allemand, A. Koch, F. Wudl, Y. Rubin, F. Diederich, M.M. Alvarez, S.J. Anz, and R.L. Whetten, J. Am. Chem. Soc. 113, 1050 (1991).CrossRefGoogle Scholar
  14. 14.
    Q. Xie, E. Perez-Cordero, and L. Echegoyen, J. Am. Chem. Soc. 114, 3978 (1992).CrossRefGoogle Scholar
  15. 15.
    C. Jehoulet, A.J. Bard, and F. Wudl, J. Am. Chem. Soc. 113, 5456 (1991).CrossRefGoogle Scholar
  16. 16.
    T. Kato, T. Kodama, M. Oyama, S. Okazaki, T. Shida, T. Nakagawa, Y. Matsui, S. Suzuki, H. Shiromaru, K. Yamauchi, and Y. Achiba, Chem. Phys. Lett. 186, 35 (1991).CrossRefGoogle Scholar
  17. 17.
    R.D. Rataiczak, W. Koh, R. Subramanian, M.T. Jones, and K.M. Kadish, Synth. Met. 56, 3137 (1992).CrossRefGoogle Scholar
  18. 18.
    M.A. Greaney and S.M. Gorun, J. Phys. Chem. 95, 7142 (1991).CrossRefGoogle Scholar
  19. 19.
    L. Dunsch. In: Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, K.M. Kadish and R.S. Ruoff (Eds.), The Electrochemical Society, Pennington, NJ, Vol. 94–24, 1994, pp. 1068.Google Scholar
  20. 20.
    T. Kato, T. Kodama, and T. Shida, Chem. Phys. Lett. 205, 405 (1993).CrossRefGoogle Scholar
  21. 21.
    W.R. Fawcett, M. Opallo, M. Fedurco, and J.W. Lee, J. Am. Chem. Soc. 115, 196 (1993).CrossRefGoogle Scholar
  22. 22.
    Y. Yang, F. Arias, L. Echegoyen, L.P.F. Chibante, S. Flanagan, A. Robertson, and L.J. Wilson, J. Am. Chem. Soc. 117, 7801 (1995).CrossRefGoogle Scholar
  23. 23.
    J.W. Arbogast, C.S. Foote, and M. Kao, J. Am. Chem. Soc. 114, 2277 (1992).CrossRefGoogle Scholar
  24. 24.
    J.L. Anderson, Y.-Z. An, Y. Rubin, and C.S. Foote, J. Am. Chem. Soc. 116, 9763 (1994).CrossRefGoogle Scholar
  25. 25.
    C.S. Foote, Top. Curr. Chem. 169, 347 (1994).Google Scholar
  26. 26.
    R.J. Sension, A.Z. Szarka, G.R. Smith, and R.M. Hochstrasser, Chem. Phys. Lett. 185, 179 (1991).CrossRefGoogle Scholar
  27. 27.
    M. Gevaert and P.V. Kamat, J. Phys. Chem. 96, 9863 (1992).CrossRefGoogle Scholar
  28. 28.
    D.K. Palit, H.N. Ghosh, H. Pal, A.V. Sapre, J.P. Mittal, R. Seshadri, and C.N.R. Rao, Chem. Phys. Lett. 198, 113 (1992).CrossRefGoogle Scholar
  29. 29.
    L. Biczók, H. Linschitz, and R.I. Walter, Chem. Phys. Lett. 195, 339 (1992).CrossRefGoogle Scholar
  30. 30.
    L. Biczók, H. Linschitz, and R.I. Walter, Chem. Phys. Lett. 221, 188 (1994).CrossRefGoogle Scholar
  31. 31.
    L. Biczók and H. Linschitz, J. Phys. Chem. 98, 1843 (1995).CrossRefGoogle Scholar
  32. 32.
    A. Watanabe and O. Ito, J. Phys. Chem. 98, 7736 (1994).CrossRefGoogle Scholar
  33. 33.
    E. Schaffner and H. Fischer, J. Phys. Chem. 97, 13149 (1993).CrossRefGoogle Scholar
  34. 34.
    O. Ito, Y. Sasaki, Y. Yoshikawa, and A. Watanabe, J. Phys. Chem. 99, 9838 (1995).CrossRefGoogle Scholar
  35. 35.
    R.A.J. Janssen, J.C. Hummelen, K. Lee, K. Pakbaz, N.S. Sariciftci, A.J. Heeger, and F. Wudl, J. Chem. Phys. 103, 788 (1995).CrossRefGoogle Scholar
  36. 36.
    B. Kraabel, D. McBranch, N.S. Sariciftci, D. Moses, and A.J. Heeger, Phys. Rev. B 50, 18543 (1993).CrossRefGoogle Scholar
  37. 37.
    N.S. Sariciftci and A.J. Heeger, Mol. Cryst. Liq. Cryst. 256, 317 (1994).CrossRefGoogle Scholar
  38. 38.
    R.A.J. Janssen, D. Moses, and N.S. Sariciftci, J. Chem. Phys. 101, 9519 (1994).CrossRefGoogle Scholar
  39. 39.
    P.V. Kamat, J. Am. Chem. Soc. 113, 9705 (1991).CrossRefGoogle Scholar
  40. 40.
    P.V. Kamat, Chem. Rev. 93, 267 (1993).CrossRefGoogle Scholar
  41. 41.
    P.V. Kamat, I. Bedja, and S. Hotchandani, J. Phys. Chem. 98, 9137 (1994).CrossRefGoogle Scholar
  42. 42.
    G. Sauvé, P.V. Kamat, and R.S. Ruoff, J. Phys. Chem. 99, 2162 (1995).CrossRefGoogle Scholar
  43. 43.
    A.J. Schell-Sorokin, F. Mehran, G.R. Eaton, S.S. Eaton, A. Viehbeck, T.R. O'Toole, and C.A. Brown, Chem. Phys. Lett 195, 225 (1992).CrossRefGoogle Scholar
  44. 44.
    M. Baumgarten, A. Gügel, and L. Gherghel, Adv. Mater. 5, 458 (1993).CrossRefGoogle Scholar
  45. 45.
    M. Baumgarten and L. Gherghel, Appl. Magn. Reson, in press.Google Scholar
  46. 46.
    J. Stinchcombe, A. Pénicaud, P. Bhyrappa, P.D.W. Boyd, and C.A. Reed, J. Am. Chem. Soc. 115, 5212 (1993).CrossRefGoogle Scholar
  47. 47.
    P. Bhyrappa, P. Paul, J. Stinchcombe, P.W.D. Boyd, and C.A. Reed, J. Am. Chem. Soc. 115, 11004 (1993).CrossRefGoogle Scholar
  48. 48.
    P.W.D. Boyd, P. Bhyrappa, P. Paul, J. Stinchcombe, R.D. Bolskar, Y. Sun, and C.A. Reed, J. Am. Chem. Soc. 117, 2907 (1995).CrossRefGoogle Scholar
  49. 49.
    R. Subramanian, P. Boulas, M.N. Vijayashree, F. D'Souza, M.T. Jones, and K.M. Kadish, J. Chem. Soc., Chem. Commun. 1847 (1994).Google Scholar
  50. 50.
    J. Friedrich, P. Schweitzer, K.-P. Dinse, P. Rapta, and A. Staško, Appl. Mgn. Reson. 7, 415 (1994).CrossRefGoogle Scholar
  51. 51.
    R. Subramanian, P. Boulas, M.N. Vijayashree, F. D'Souza, M.T. Jones, and K.M. Kadish. In: Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, K.M. Kadish and R.S. Ruoff (Eds.), The Electrochemical Society, Pennington, NJ, Vol. 94–24, 1994, p. 779.Google Scholar
  52. 52.
    D.M. Guldi, H. Hungerbühler, E. Janata, and K.-D. Asmus, J. Phys. Chem. 97, 11258 (1993).CrossRefGoogle Scholar
  53. 53.
    D.M. Guldi, H. Hungerbühler, and K.-D. Asmus. In: Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, K.M. Kadish and R.S. Ruoff (Eds.), The Electrochemical Society, Pennington, NJ, Vol. 94–24, 1994, pp. 854.Google Scholar
  54. 54.
    D.M. Guldi, H. Hungerbühler, E. Janata, and K.-D. Asmus, J. Chem. Soc., Chem. Commun. 84 (1993).Google Scholar
  55. 55.
    D.E. Cliffel and A.J. Bard, J. Phys. Chem. 98, 8140 (1994).CrossRefGoogle Scholar
  56. 56.
    P.C. Trulove, R.T. Carlin, G.R. Eaton, and S.S. Eaton. In: Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, K.M. Kadish and R.S. Ruoff (Eds.), The Electrochemical Society, Pennington, NJ, Vol. 95–10, 1995, p. 362.Google Scholar
  57. 57.
    S.S. Eaton and G.R. Eaton, Appl. Magn. Reson., in press.Google Scholar
  58. 58.
    V. Brezová, A. Staško, P. Rapta, G. Domschke, A. Bartl, and L. Dunsch, J. Phys. Chem. 99, 16234 (1995).CrossRefGoogle Scholar
  59. 59.
    A. Staško, V. Brezová, S. Biskupič, K.-P. Dinse, P. Schweitzer, and M. Baumgarten, J. Phys. Chem. 99, 8782 (1995).CrossRefGoogle Scholar
  60. 60.
    A. Staško, V. Brezová, S. Biskupič, K.-P. Dinse, R. Groß, M. Baumgarten, A. Gügel, J. Electroanal. Chem., in press.Google Scholar
  61. 61.
    V. Brezová, A. Gügel, P. Rapta, and A. Staško, J. Phys. Chem., submitted.Google Scholar
  62. 62.
    A. Staško, V. Brezová, P. Rapta, K.-D. Asmus, and D.M. Guldi, J. Phys. Chem., submitted.Google Scholar
  63. 63.
    D.M. Guldi, H. Hungerbühler, and K.-D. Asmus, J. Phys. Chem. 99, 13487 (1995).CrossRefGoogle Scholar
  64. 64.
    H. Moriyama, H. Kobayashi, A. Kobayashi, and T. Watanabe, J. Am. Chem. Soc. 115, 1185 (1993).CrossRefGoogle Scholar
  65. 65.
    J. Chen, Q.-F. Shao, Z.-E. Huang, R.-F. Cai, and S.-M. Chen, Chem. Phys. Lett. 235, 570 (1995).CrossRefGoogle Scholar
  66. 66.
    V. Brezová and A. Staško, J. Catal. 147, 156 (1994).CrossRefGoogle Scholar
  67. 67.
    V. Brezová, A. Staško, S. Biskupič, A. Blażková, and B. Havlínová, J. Phys. Chem. 98, 8977 (1994).CrossRefGoogle Scholar
  68. 68.
    A. Staško, A. Tkáč, L. Malik, V. Adamčík, and M. Hronec, Org. Magn. Reson. 9, 269 (1977).CrossRefGoogle Scholar
  69. 69.
    M.R. Wasielewski, M.P. O'Neil, K.R. Lykke, M.J. Pellin, and D.M. Gruen, J. Am. Chem. Soc. 113, 2774 (1991).CrossRefGoogle Scholar
  70. 70.
    M. Bennati, A. Grupp, M. Mehring, K.-P. Dinse, and J. Fink, Chem. Phys. Lett. 200, 440 (1992).CrossRefGoogle Scholar
  71. 71.
    A. Regev, D. Gamliel, V. Meiklyar, S. Michaeli, and H. Levanon, J. Phys. Chem. 97, 3671 (1993).CrossRefGoogle Scholar
  72. 72.
    A. Hudson and G.R. Luckhurst, Chem. Rev. 69, 191 (1969).CrossRefGoogle Scholar
  73. 73.
    P.N. Keizer, J.R. Morton, K.F. Preston, and A.K. Sugden, J. Phys. Chem. 95, 7117 (1991).CrossRefGoogle Scholar
  74. 74.
    A.S. Lobach, N.F. Goldshleger, M.G. Kaplunov, A.V. Kulikov, Chem. Phys. Lett. 243, 22 (1995).CrossRefGoogle Scholar
  75. 75.
    H. Hase and Y. Miyataka, Chem. Phys. Lett. 229, 593 (1994).CrossRefGoogle Scholar
  76. 76.
    L. Gherghel and M. Baumgarten, Synth. Met. 69, 1389 (1995).CrossRefGoogle Scholar
  77. 77.
    K.M. Kadish, P.L. Boulas, M.N. Vijayashree, R. Subramanian, X. Gao, S. Mead, Z. Tan, and M.T. Jones. In: Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, K.M. Kadish and R.S. Ruoff (Eds.), The Electrochemical Society, Pennington, NJ, Vol. 95–10, 1995, p. 213.Google Scholar
  78. 78.
    M.T. Jones, R. Subramanian, P.L. Boulas, R. Rataiczak, W. Koh, and K.M. Kadish. In: Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, K.M. Kadish and R.S. Ruoff (Eds.), The Electrochemical Society, Pennington, NJ, Vol. 95–10, 1995, p. 229.Google Scholar
  79. 79.
    G. Gorongui and E. Clementi, Int. J. Quantum Chem. 42, 1185 (1992).CrossRefGoogle Scholar
  80. 80.
    F. Negri, G. Orlandi, and F. Zerbetto, J. Am. Chem. Soc. 114, 2909 (1992).CrossRefGoogle Scholar
  81. 81.
    K. Yoshizawa, T. Sato, K. Tanaka, T. Yamabe, and K. Okahara, Chem. Phys. Lett. 213, 498 (1993).CrossRefGoogle Scholar
  82. 82.
    T. Andersson, K. Nilsson, M. Sundahl, G. Westman, and O. Wennerström, J. Chem. Soc., Chem. Commun. 604 (1992).Google Scholar
  83. 83.
    M. Sundahl, T. Andersson, K. Nilsson, O. Wennerström, and G. Westman, Synth. Met. 55, 3252 (1993).CrossRefGoogle Scholar
  84. 84.
    P. Boulas, W. Kutner, M.T. Jones, and K.M. Kadish, J. Phys. Chem. 98, 1282 (1994).CrossRefGoogle Scholar
  85. 85.
    N.M. Dimitrijevič and P.V. Kamat, J. Phys. Chem. 97, 7623 (1993).CrossRefGoogle Scholar
  86. 86.
    D.M. Guldi, R.R. Huie, P. Neta, H. Hungerbühler, and K.-D. Asmus, Chem. Phys. Lett. 223, 511 (1994).CrossRefGoogle Scholar
  87. 87.
    K.I. Priyadarsini, A.K. Tyagi, H. Mohan, and J.P. Mittal, J. Phys. Chem. 98, 4756 (1994).CrossRefGoogle Scholar
  88. 88.
    K.I. Priyadarsini and H. Mohan, J. Photochem. Photobiol. A: Chem. 85, 63 (1995).CrossRefGoogle Scholar
  89. 89.
    K. Reszka and C.F. Chignell, Free Radical Res. Commun. 14, 97 (1991).CrossRefGoogle Scholar
  90. 90.
    A. Staško, A. Blażková, M. Brezová, L. Lapčík, and L.' Lapčík, Jr. J. Photochem. Photobiol. A: Chem. 76, 159 (1993).CrossRefGoogle Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • A. Staško
    • 1
  • V. Brezová
    • 1
  • P. Rapta
    • 1
  • S. Biskupič
    • 1
  • K. -P. Dinse
    • 2
  • A. Gügel
    • 3
  1. 1.Faculty of Chemical TechnologySlovak Technical UniversityBratislavaSlovak Republic
  2. 2.Physical Chemistry IIITH DarmstadtDarmstadtGermany
  3. 3.Max-Planck-Institut für PolymerforschungMainzGermany

Personalised recommendations