Research on Chemical Intermediates

, Volume 23, Issue 9, pp 829–839 | Cite as

Absorption and fluorescence spectra of 9-anthrol and its chemical species in solution

  • Tsuneo Fujii
  • Shozi Mishima
  • Nobuaki Tanaka
  • Osamu Kawauchi
  • Kazuhiko Kodaira
  • Hiromasa Nishikiori
  • Yoshinobu Kawai


The absorption, fluorescence, and fluorescence-excitation spectra of 9-anthrol (and/or anthrone) have been observed in various solvents, one of which includes a silicon-aluminium ester (diisobutoxyaluminium triethyl silane[(OBu)2−Al−O−Si−(OEt)3 SAE]). The fluorescence spectra of 9-anthrol shows peak wavelengths at 442 nm in benzene, 454 nm in methanol, 539 nm in triethylamine, and 550 nm in basic solution, which can be assigned to a neutral, a hydrogen-bonded neutral, an ion pair, and an anionic species of 9-anthrol, respectively. In ethanol solution including SAE, on the other hand, a new fluorescence peak appears at 473 nm. This new band originates from a complex formed between 9-anthrol and SAE. The excited-state ion pair is formed through the hydrogen-bonded form in water and the complex form in triethylamine. CNDO/S calculations support the experimental results.


Fluorescence Spectrum Basic Solution Anthrone Vibrational Peak Triethyl Silane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Birks, Photophysics of Aromatic Molecules, Wiley Interscience, London, 1970.Google Scholar
  2. 2.
    N. Mataga and R. Kubota, Molecular Interactions and Electronics Spectra, Marcel Dekker, New York, 1970.Google Scholar
  3. 3.
    T.P. Smith, K.A. Zaklika, K. Thakur, G.C. Walker, K. Tominaga, and P. Barbara, J. Phys. Chem. 95, 10465 (1991) and special issue of J. Phys. Chem. 95, 10215–10524 (1991).CrossRefGoogle Scholar
  4. 4.
    T.P. Carter, G.D. Gillispie, and M.A. Connolly, J. Phys. Chem. 86, 192 (1982)CrossRefGoogle Scholar
  5. 5.
    P.A. Marasinghe and G.D. Gillispie, Chem. Phys. 136, 249 (1989).CrossRefGoogle Scholar
  6. 6.
    H. Inoue, M. Hida, N. Nakashima, and K. Yoshihara, J. Phys. Chem. 86, 3184 (1982).CrossRefGoogle Scholar
  7. 7.
    F. Graf, H.-K. Hong, A. Nazzal, and D. Haarer, Chem. Phys. Lett. 59, 217 (1978).CrossRefGoogle Scholar
  8. 8.
    T. Tani, H. Namikawa, K. Arai, and A. Makishima, J. Appl. Phys. 58, 3559 (1985); A. Makishima and T. Tani, J. Am. Ceram. Soc. 69, C-72 (1986).CrossRefGoogle Scholar
  9. 9.
    Y. Bansho and K. Nukada, Bull. Chem. Soc. Jpn. 33, 549 (1960).CrossRefGoogle Scholar
  10. 10.
    H. Baba and K. Takemura, Bull. Chem. Soc. Jpn. 37, 1241 (1964).CrossRefGoogle Scholar
  11. 11.
    H. Baba and K. Takemura, Tetrahedron 24, 4779 (1968)CrossRefGoogle Scholar
  12. 12.
    K. Takemura and H. Baba, Tetrahedron 24, 5311 (1968).CrossRefGoogle Scholar
  13. 13.
    G. Löber, Acta Chim Hung. 40, 9 (1964).Google Scholar
  14. 14.
    N. Kanamaru and S. Nagakura, J. Am. Chem. Soc. 90, 6905 (1968).CrossRefGoogle Scholar
  15. 15.
    J.C. Netto-Ferreira, D. Weir, and J. C. Scaiano, J. Photochem. Photobiol., A. Chem. 48, 345 (1989).CrossRefGoogle Scholar
  16. 16.
    R. W. Redmond and J.C. Scaiano, J. Photochem. Photobiol., A: Chem. 49, 203 (1989).CrossRefGoogle Scholar
  17. 17.
    H. Hiratsuka, Y. Mori, M. Ishikawa, K. Okazaki, and H. Shizuka, J. Chem. Soc. Faraday Trans. 2 81, 1665 (1985).CrossRefGoogle Scholar
  18. 18.
    T. Fujii, M. Sano, S. Mishima, and H. Hiratsuka, Bull. Chem. Soc. Jpn. 69, 1833 (1996).CrossRefGoogle Scholar
  19. 19.
    MOPAC Ver. 6, J.J. Stewart, QCPE Bull. 9, 10 (1989). We also thank Mr. D. Kano for use of the personal computer version.Google Scholar
  20. 20.
    N. Mataga and Y. Kaifu, Mol. Phys. 7, 137 (1963).CrossRefGoogle Scholar
  21. 21.
    N. Agmon, D. Huppert, A. Masad, and E. Pines, J. Phys. Chem. 95, 10407 (1991).CrossRefGoogle Scholar
  22. 22.
    K. Nishimoto, Bull. Chem. Soc. Jpn. 66, 1876 (1993).CrossRefGoogle Scholar
  23. 23.
    H.A. Benesi and B.H. Windquist Advances in Catalysis, Academic Press, New York, 997, 1978.Google Scholar
  24. 24.
    B.C. Gates, J.R. Katzer, and G.C.A. Schuit, Chemistry of Catalytic Processes, McGraw-Hill, New York, 1979.Google Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • Tsuneo Fujii
    • 1
  • Shozi Mishima
    • 2
  • Nobuaki Tanaka
    • 1
  • Osamu Kawauchi
    • 1
  • Kazuhiko Kodaira
    • 1
  • Hiromasa Nishikiori
    • 1
  • Yoshinobu Kawai
    • 1
  1. 1.Department of Chemistry and Materials Engineering, Faculty of EngineeringShinshu UniversityNaganoJapan
  2. 2.Cooperative Research CenterShinshu UniversityNaganoJapan

Personalised recommendations