Research on Chemical Intermediates

, Volume 23, Issue 7, pp 675–682 | Cite as

Effect of doping fulllerene soots with metals on the conversion of methane into higher hydrocarbons

  • A. S. Hirschon
  • Y. Du
  • H. -J. Wu
  • R. B. Wilson
  • R. Malhotra


We have previously demonstrated that fullerene soots catalyze hydrogen-transfer reactions that are useful for hydrocarbon processing, including conversion of methane into higher hydrocarbons. In this paper we describe the effect of doping fullerene soot with alkali and transition metals for converting methane and other light hydrocarbons. The fullerene soot was found to lower the temperature threshold for methane activation compared to other carbons; however, the selectivity to C2 hydrocarbons was quite low (20%). In contrast, when the soot was doped with metals such as Mn or K, the overall yield of hydrocarbons increased and selectivities as high as 80% were achieved. When potassium was used as a dopant, the selectivity to C3 and C4 hydrocarbons also increased.


Hydrocarbon Fullerene Alkali Metal Methane Conversion High Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Malhotra, D.F. McMillen, D.S. Tse, D.C. Lorents, R.S. Ruoff, and D.M. Keegan, Energy Fuels, 7, 685 (1993).CrossRefGoogle Scholar
  2. 2.
    R. Malhotra, D. Tse, and D. McMillen, U. S. Patent, 5,336,828, Aug. 9, 1994.Google Scholar
  3. 3.
    C. Rüchardt, M. Gerst, J. Ebenhoch, H.D. Beckhaus, E.E.B. Campbell, R. Tellgmann, H. Schwarz, T. Weiske, and S. Pitter, Angew. Chemie International Edition, Engl., 105, 609 (1993).CrossRefGoogle Scholar
  4. 4.
    I. Mochida, Y. Aoyagi, S. Yatsunami, H. Fujitsu, Anal. Appl. Pyro. 21, 95 (1992).CrossRefGoogle Scholar
  5. 5.
    J.K.S. Wan, M.Y. Tse, H. Husby, and M.C. Depew, J. Microwave Power and Electromagnetic Energy, 25, 32 (1990).Google Scholar
  6. 6.
    M.S. Ioffe, S.D. Pollington, and J.K.S. Wan, J. Catalysis, 151, 349 (1995).CrossRefGoogle Scholar
  7. 7.
    A.S. Hirschon, H.-J. Wu, R.B. Wilson, and R. Malhotra, J. Phys. Chem., 99, 17483 (1995).CrossRefGoogle Scholar
  8. 8.
    R.C. Windham and B.E. Koel, J. Phys. Chem., 94, 1489 (1990).CrossRefGoogle Scholar
  9. 9.
    B. Wood and K. Sancier, Catal. Rev.-Sci. Eng., 26, 233 (1984).CrossRefGoogle Scholar
  10. 10.
    T. Koerts, M. Deelen, and R. Van Santen, J. Catal., 138, 101 (1992).CrossRefGoogle Scholar
  11. 11.
    T. Koerts, P. Leclercq, and R. Van Santen, J. Am. Chem. Soc., 114, 7272 (1992).CrossRefGoogle Scholar
  12. 12.
    A. Amariglio, P. Pareja, M. Belgued, and H. Amariglio, J. Chem. Soc., Chem. Commun., 561 (1994).Google Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • A. S. Hirschon
    • 1
  • Y. Du
    • 1
  • H. -J. Wu
    • 1
  • R. B. Wilson
    • 1
  • R. Malhotra
    • 1
  1. 1.Chemistry and Chemical Engineering LaboratorySRI InternationalMenlo ParkUSA

Personalised recommendations